
Chapter 5
Concurrency:

Mutual Exclusion
and Synchronization

Operating
Systems:
Internals

and Design
Principles

Ninth Edition
By William Stallings

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

nOperating System design is concerned with
the management of processes and threads:

n Multiprogramming
n The management of multiple processes within a

uniprocessor system
n Multiprocessing

n The management of multiple processes within a
multiprocessor

n Distributed Processing
n The management of multiple processes

executing on multiple, distributed computer
systems

n The recent proliferation of clusters is a prime
example of this type of system

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multiple
Applications

Invented to allow
processing time to
be shared among

active applications

Structured
Applications

Extension of
modular design
and structured
programming

Operating
System

Structure

OS themselves
implemented as a
set of processes

or threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 5.1

Some Key
Terms

Related
to

Concurrency

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Mutual Exclusion:
Software Approaches

n Software approaches can be implemented for concurrent processes that
execute on a single-processor or a multiprocessor machine with shared
main memory

n These approaches usually assume elementary mutual exclusion at the
memory access level

n Simultaneous accesses (reading and/or writing) to the same location in main
memory are serialized by some sort of memory arbiter, although the order of
access granting is not specified ahead of time

n Beyond this, no support in the hardware, operating system, or programming
language is assumed

n Dijkstra reported an algorithm for mutual exclusion for two processes,
designed by the Dutch mathematician Dekker

n Following Dijkstra, we develop the solution in stages
n This approach has the advantage if illustrating many of the common bugs

encountered in developing concurrent programs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Interleaving and overlapping
n Can be viewed as examples of concurrent processing

n Both present the same problems

n Uniprocessor – the relative speed of execution of
processes cannot be predicted

n Depends on activities of other processes

n The way the OS handles interrupts

n Scheduling policies of the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

nSharing of global resources

nDifficult for the OS to manage the allocation
of resources optimally

nDifficult to locate programming errors as
results are not deterministic and
reproducible

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Occurs when multiple processes or
threads read and write data items

n The final result depends on the order of
execution

n The “loser” of the race is the process
that updates last and will determine the
final value of the variable

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Operating System Concerns

n Design and management issues raised by the existence of
concurrency:

n The OS must:

Be able to keep track of various processes

Allocate and de-allocate resources for each active process

Protect the data and physical resources of each process against unintended interference
by other processes

The functioning of a process, and the output it produces, must be independent of the speed
at which its execution is carried out relative to the speed of other concurrent processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

And

Degree of Awareness Relationship Influence that One
Process Has on the
Other

Potential Control
Problems

Processes unaware of
each other

Competition •Results of one
process independent
of the action of
others

•Timing of process
may be affected

•Mutual exclusion

•Deadlock (renewable
resource)

•Starvation

Processes indirectly
aware of each other
(e.g., shared object)

Cooperation by
sharing

•Results of one
process may depend
on information
obtained from others

•Timing of process
may be affected

•Mutual exclusion

•Deadlock (renewable
resource)

•Starvation

•Data coherence

Processes directly
aware of each other
(have communication
primitives available to
them)

Cooperation by
communication

•Results of one
process may depend
on information
obtained from others

•Timing of process
may be affected

•Deadlock
(consumable
resource)

•Starvation

Table 5.2

Process
Interaction

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Resource Competition

§Concurrent processes come into conflict when they
are competing for use of the same resource
§ For example: I/O devices, memory, processor time, clock

In the case of competing processes three
control problems must be faced:

• The need for mutual exclusion
• Deadlock
• Starvation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Cooperation Among
Processes by Sharing

Covers processes
that interact with
other processes
without being

explicitly aware of
them

Processes may use
and update the

shared data without
reference to other

processes, but know
that other processes
may have access to

the same data

Thus the processes
must cooperate to

ensure that the data
they share are

properly managed

The control
mechanisms must

ensure the integrity
of the shared data

Because data are
held on resources
(devices, memory),
the control
problems of mutual
exclusion, deadlock,
and starvation are
again present
• The only difference is that
data items may be
accessed in two different
modes, reading and
writing, and only writing
operations must be
mutually exclusive

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Cooperation Among
Processes by Communication

n The various processes participate in a common effort that links all of the
processes

n The communication provides a way to synchronize, or coordinate, the
various activities

n Typically, communication can be characterized as consisting of messages of
some sort

n Primitives for sending and receiving messages may be provided as part of
the programming language or provided by the OS kernel

n Mutual exclusion is not a control requirement for this sort of cooperation

n The problems of deadlock and starvation are still present

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Any facility or capability that is to provide support
for mutual exclusion should meet the following
requirements:

n Mutual exclusion must be enforced: only one process at a time is allowed
into its critical section, among all processes that have critical sections for
the same resource or shared object

n A process that halts must do so without interfering with other processes
n It must not be possible for a process requiring access to a critical section

to be delayed indefinitely: no deadlock or starvation
n When no process is in a critical section, any process that request entry to

its critical section must be permitted to enter without delay
n No assumptions are made about relative process speeds or number of

processes
n A process remains inside its critical section for a finite time only

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

§ Interrupt Disabling
§ In a uniprocessor system, concurrent

processes cannot have overlapped
execution; they can only be interleaved

§ A process will continue to run until it
invokes an OS service or until it is
interrupted

§ Therefore, to guarantee mutual
exclusion, it is sufficient to prevent a
process from being interrupted

§ This capability can be provided in the
form of primitives defined by the OS
kernel for disabling and enabling
interrupts

§ Disadvantages:

§ The efficiency of execution
could be noticeably degraded
because the processor is
limited in its ability to
interleave processes

§ This approach will not work
in a multiprocessor
architecture

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

nCompare&Swap Instruction
n Also called a “compare and exchange

instruction”

n A compare is made between a memory
value and a test value

n If the values are the same a swap occurs

n Carried out atomically (not subject to
interruption)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Applicable to any number of processes on
either a single processor or multiple
processors sharing main memory

n Simple and easy to verify

n It can be used to support multiple critical
sections; each critical section can be defined
by its own variable

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Special Machine Instruction:
Disadvantages

n Busy-waiting is employed
n Thus while a process is waiting for access to a critical section

it continues to consume processor time

n Starvation is possible
n When a process leaves a critical section and more than one

process is waiting, the selection of a waiting process is
arbitrary; some process could indefinitely be denied access

n Deadlock is possible

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Table 5.3

Common

Concurrency

Mechanisms

Semaphore An integer value used for signaling among processes. Only three
operations may be performed on a semaphore, all of which are
atomic: initialize, decrement, and increment. The decrement
operation may result in the blocking of a process, and the increment
operation may result in the unblocking of a process. Also known as a
counting semaphore or a general semaphore

Binary Semaphore A semaphore that takes on only the values 0 and 1.
Mutex Similar to a binary semaphore. A key difference between the two is

that the process that locks the mutex (sets the value to zero) must be
the one to unlock it (sets the value to 1).

Condition Variable A data type that is used to block a process or thread until a particular
condition is true.

Monitor A programming language construct that encapsulates variables,
access procedures and initialization code within an abstract data type.
The monitor's variable may only be accessed via its access
procedures and only one process may be actively accessing the
monitor at any one time. The access procedures are critical sections.
A monitor may have a queue of processes that are waiting to access
it.

Event Flags A memory word used as a synchronization mechanism. Application
code may associate a different event with each bit in a flag. A thread
can wait for either a single event or a combination of events by
checking one or multiple bits in the corresponding flag. The thread is
blocked until all of the required bits are set (AND) or until at least
one of the bits is set (OR).

Mailboxes/Messages A means for two processes to exchange information and that may be
used for synchronization.

Spinlocks Mutual exclusion mechanism in which a process executes in an
infinite loop waiting for the value of a lock variable to indicate
availability.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Semaphore

• There is no way to inspect or
manipulate semaphores other
than these three operations

A variable that has
an integer value
upon which only

three operations are
defined:

1) A semaphore may be initialized to a nonnegative integer value

2) The semWait operation decrements the semaphore value

3) The semSignal operation increments the semaphore value

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Consequences

There is no way to
know before a

process decrements
a semaphore

whether it will
block or not

There is no way to
know which process

will continue
immediately on a

uniprocessor system
when two processes

are running
concurrently

You don’t know
whether another

process is waiting so
the number of

unblocked processes
may be zero or one

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

❋A queue is used to hold processes waiting on the semaphore

• The process that has been blocked the longest is
released from the queue first (FIFO)

Strong Semaphores

• The order in which processes are removed from the
queue is not specified

Weak Semaphores

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Producer/Consumer Problem

General
Statement:

One or more producers are generating data and
placing these in a buffer

A single consumer is taking items out of the buffer one
at a time

Only one producer or consumer may access the buffer
at any one time

The
Problem: Ensure that the producer won’t try

to add data into the buffer if its full,
and that the consumer won’t try to
remove data from an empty buffer

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Producer Consumer s n Delay
1 1 0 0
2 semWaitB(s) 0 0 0
3 n++ 0 1 0
4 if (n==1)

(semSignalB(delay))
 0 1 1

5 semSignalB(s) 1 1 1
6 semWaitB(delay) 1 1 0
7 semWaitB(s) 0 1 0
8 n-- 0 0 0
9 semSignalB(s) 1 0 0
10 semWaitB(s) 0 0 0
11 n++ 0 1 0
12 if (n==1)

(semSignalB(delay))
 0 1 1

13 semSignalB(s) 1 1 1
14 if (n==0) (semWaitB(delay)) 1 1 1
15 semWaitB(s) 0 1 1
16 n-- 0 0 1
17 semSignalB(s) 1 0 1
18 if (n==0) (semWaitB(delay)) 1 0 0
19 semWaitB(s) 0 0 0
20 n-- 0 –1 0
21 semSignalB(s) 1 –1 0

Table 5.4
Possible Scenario for the Program of Figure 5.12

Note: White
areas
represent the
critical
section
controlled by
semaphore
s. © 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Implementation of
Semaphores

n Imperative that the semWait and semSignal
operations be implemented as atomic primitives

n Can be implemented in hardware or firmware

n Software schemes such as Dekker’s or Peterson’s
algorithms can be used

n Another alternative is to use one of the
hardware-supported schemes for
mutual exclusion

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Monitors

n Programming language construct that provides
equivalent functionality to that of semaphores and is
easier to control

n Implemented in a number of programming
languages

n Concurrent Pascal, Pascal-Plus, Modula-2, Modula-3, Java

n Has also been implemented as a program library

n Software module consisting of one or more
procedures, an initialization sequence, and local
data

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Monitor Characteristics

Only one process may be executing in the monitor at a time

Process enters monitor by invoking one of its procedures

Local data variables are accessible only by the monitor’s
procedures and not by any external procedure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Synchronization

n A monitor supports synchronization by the use of
condition variables that are contained within the
monitor and accessible only within the monitor

n Condition variables are a special data type in
monitors which are operated on by two functions:

n cwait(c): suspend execution of the calling process
on condition c

n csignal(c): resume execution of some process
blocked after a cwait on the same condition

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n When processes interact with one another two
fundamental requirements must be satisfied:

n Message passing is one approach to providing both
of these functions

n Works with distributed systems and shared memory multiprocessor and
uniprocessor systems

Synchronization

• To enforce
mutual exclusion

Communication

• To exchange
information

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Message Passing

n The actual function is normally provided in the form
of a pair of primitives:

send (destination, message)
receive (source, message)

n A process sends information in the form of a message
to another process designated by a destination

n A process receives information by executing the
receive primitive, indicating the source and the
message

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Synchronization
 Send
 blocking
 nonblocking
 Receive
 blocking
 nonblocking
 test for arrival

Addressing
 Direct
 send
 receive
 explicit
 implicit
 Indirect
 static
 dynamic
 ownership

Format
 Content
 Length
 fixed
 variable

Queueing Discipline
 FIFO
 Priority

Table 5.5

Design Characteristics of Message Systems for
Interprocess Communication and Synchronization

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Communication of a

message between two

processes implies

synchronization between the

two

When a receive primitive is
executed in a process there are two possibilities:

If a message has previously
been sent the message is received and execution continues

If there is no waiting message the
process is blocked until a message
arrives or the process continues to

execute, abandoning the attempt to receiveThe receiver cannot

receive a message until

it has been sent by

another process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

nBoth sender and receiver are blocked until
the message is delivered

nSometimes referred to as a rendezvous

nAllows for tight synchronization between
processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Nonblocking Send

• Sender continues on but receiver is blocked until the
requested message arrives

• Most useful combination
• Sends one or more messages to a variety of destinations as

quickly as possible
• Example -- a service process that exists to provide a

service or resource to other processes

Nonblocking send, blocking receive

• Neither party is required to wait

Nonblocking send, nonblocking receive

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

§ Schemes for specifying processes in send
and receive primitives fall into two
categories:

Direct
addressing

Indirect
addressing

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Direct Addressing
n Send primitive includes a specific identifier

of the destination process
n Receive primitive can be handled in one

of two ways:
nRequire that the process explicitly

designate a sending process
n Effective for cooperating concurrent processes

n Implicit addressing
n Source parameter of the receive primitive possesses

a value returned when the receive operation has been
performed

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Indirect Addressing

Messages are sent to a
shared data structure

consisting of queues that
can temporarily hold

messages

Queues are
referred to as
mailboxes

One process sends a
message to the mailbox
and the other process
picks up the message

from the mailbox

Allows for
greater flexibility

in the use of
messages

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Queueing Discipline

n The simplest queueing discipline is first-in-first-out
n This may not be sufficient if some message are more

urgent than others

n Other alternatives are:
n To allow the specifying of message priority, on the basis

of message type or by designation by the sender

n To allow the receiver to inspect the message queue and
select which message to receive next

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Readers/Writers Problem

n A data area is shared among many processes
n Some processes only read the data area, (readers) and

some only write to the data area (writers)

n Conditions that must be satisfied:
n Any number of readers may simultaneously read the file

n Only one writer at a time may write to the file
n If a writer is writing to the file, no reader may read it

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Readers only in the system

•wsem set
•no queues

Writers only in the system

•wsem and rsem set
•writers queue on wsem

Both readers and writers with read first

•wsem set by reader
•rsem set by writer
•all writers queue on wsem
•one reader queues on rsem
•other readers queue on z

Both readers and writers with write first

•wsem set by writer
•rsem set by writer
•writers queue on wsem
•one reader queues on rsem
•other readers queue on z

 Table 5.6
State of the Process Queues for Program of Figure 5.26

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary
n Monitors

n Monitor with signal

n Alternate model of monitors with
notify and broadcast

n Message passing

n Synchronization

n Addressing

n Message format

n Queueing discipline

n Mutual exclusion

n Readers/writers problem

n Readers have priority

n Writers have priority

n Mutual exclusion: software approaches
n Dekker’s algorithm
n Peterson’s algorithm

n Principles of concurrency
n Race condition
n OS concerns
n Process interaction
n Requirements for mutual exclusion

n Mutual exclusion: hardware support
n Interrupt disabling
n Special machine instructions

n Semaphores
n Mutual exclusion
n Producer/consumer problem
n Implementation of semaphores

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

