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n The permanent blocking of  a set of  processes that 
either compete for system resources or 
communicate with each other

n A set of  processes is deadlocked when each 
process in the set is blocked awaiting an event 
that can only be triggered by another blocked 
process in the set

n Permanent because none of  the events is                           
ever triggered

n No efficient solution in the general case
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Figure 6.2   Example of Deadlock

= possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

= deadlock-inevitable region
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Reusable
• Can be safely used by only one process at a time 

and is not depleted by that use
• Processors, I/O channels, main and secondary 

memory, devices, and data structures such as 
files, databases, and semaphores

Consumable
• One that can be created (produced) and 

destroyed (consumed)
• Interrupts, signals, messages, and 

information
• In I/O buffers
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Example 2:
Memory Request

n Space is available for allocation of  200Kbytes, and 
the following sequence of  events occur:

n Deadlock occurs if  both processes progress to their 
second request

P1
. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2
. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;
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Consumable Resources 
Deadlock

n Consider a pair of  processes, in which each process attempts to receive a 
message from the other process and then send a message to the other 
process:

n Deadlock occurs if  the Receive is blocking
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Deadlock Approaches

n Deadlock avoidance

n Do not grant a resource 
request if  this allocation 
might lead to deadlock
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n Deadlock detection

n Grant resource requests 
when possible, but 
periodically check for the 
presence of  deadlock and 
take action to recover

n There is no single effective 
strategy that can deal with all 
types of  deadlock

n Three approaches are common:

n Deadlock prevention

n Disallow one of  the three 
necessary conditions for 
deadlock occurrence, or 
prevent circular wait 
condition from happening
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Conditions for Deadlock

Mutual 
Exclusion

• Only one 
process may 
use a 
resource at a 
time

• No process 
may access a 
resource until 
that has been 
allocated to 
another 
process

Hold-and-
Wait

• A process 
may hold 
allocated 
resources 
while 
awaiting 
assignment 
of  other 
resources

No Pre-emption

• No resource 
can be 
forcibly 
removed 
from a 
process 
holding it

Circular Wait

• A closed 
chain of  
processes 
exists, such 
that each 
process holds 
at least one 
resource 
needed by 
the next 
process in  
the chain

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 



n Design a system in such a way that the possibility of  
deadlock is excluded

n Two main methods:
n Indirect

n Prevent the occurrence of  one of  the three necessary conditions

n Direct
n Prevent the occurrence of  a circular wait
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n Mutual exclusion
n If  access to a resource requires mutual exclusion, then mutual 

exclusion must be supported by the OS

n Some resources, such as files, may allow multiple accesses for 
reads but only exclusive access for writes

n Even in this case, deadlock can occur if  more than one process 
requires write permission

n Hold and wait
n Can be prevented by requiring that a process request all of  its 

required resources at one time and blocking the process until all 
requests can be granted simultaneously
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n No Preemption
n If  a process holding certain resources is denied a further request, 

that process must release its original resources and request them 
again

n OS may preempt the second process and require it to release its 
resources

n Circular Wait
n The circular wait condition can be prevented by defining a linear 

ordering of  resource types
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n Allows the three necessary conditions but makes judicious 
choices to assure that the deadlock point is never reached

n A decision is made dynamically whether the current 
resource allocation request will, if  granted, potentially 
lead to a deadlock

n Allows the three necessary conditions but makes   
judicious choices to assure that the deadlock                
point is never reached

n Requires knowledge of  future process requests
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Deadlock 
Avoidance

Process Initiation 
Denial
• Do not start a 

process if  its 
demands might lead 
to deadlock

Resource 
Allocation Denial
• Do not grant an 

incremental resource 
request to a process if  
this allocation might 
lead to deadlock
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n Referred to as the banker’s algorithm

n State of  the system reflects the current allocation of  
resources to processes

n Safe state is one in which there is at least one sequence of  
resource allocations to processes that does not result in a 
deadlock

n Unsafe state is a state that is not safe
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 R1 R2 R3   R1 R2 R3   R1 R2 R3 
P1 3 2 2  P1 1 0 0  P1 2 2 2 
P2 6 1 3  P2 6 1 2  P2 0 0 1 
P3 3 1 4  P3 2 1 1  P3 1 0 3 

P4 4 2 2  P4 0 0 2  P4 4 2 0 
 Claim matrix C   Allocation matrix A   C – A 

 
R1 R2 R3  R1 R2 R3 
9 3 6  0 1 1 
Resource vector R  Available vector V 

 
(a) Initial state 

Figure 6.7  Determination of a Safe State 
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 R1 R2 R3   R1 R2 R3   R1 R2 R3 
P1 3 2 2  P1 1 0 0  P1 2 2 2 
P2 0 0 0  P2 0 0 0  P2 0 0 0 
P3 3 1 4  P3 2 1 1  P3 1 0 3 

P4 4 2 2  P4 0 0 2  P4 4 2 0 
 Claim matrix C   Allocation matrix A   C – A 

 
R1 R2 R3  R1 R2 R3 
9 3 6  6 2 3 
Resource vector R  Available vector V 

 
(b) P2 runs to completion 

Figure 6.7  Determination of a Safe State 
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 R1 R2 R3   R1 R2 R3   R1 R2 R3 
P1 0 0 0  P1 0 0 0  P1 0 0 0 
P2 0 0 0  P2 0 0 0  P2 0 0 0 
P3 3 1 4  P3 2 1 1  P3 1 0 3 

P4 4 2 2  P4 0 0 2  P4 4 2 0 
 Claim matrix C   Allocation matrix A   C – A 

 
R1 R2 R3  R1 R2 R3 
9 3 6  7 2 3 
Resource vector R  Available vector V 

 

(c) P1 runs to completion 

Figure 6.7  Determination of a Safe State 
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 R1 R2 R3   R1 R2 R3   R1 R2 R3 
P1 0 0 0  P1 0 0 0  P1 0 0 0 
P2 0 0 0  P2 0 0 0  P2 0 0 0 
P3 0 0 0  P3 0 0 0  P3 0 0 0 
P4 4 2 2  P4 0 0 2  P4 4 2 0 

 Claim matrix C   Allocation matrix A   C – A 
 

R1 R2 R3  R1 R2 R3 
9 3 6  9 3 4 
Resource vector R  Available vector V 

 

(d) P3 runs to completion 
(d) P3 runs to completion 

Figure 6.7  Determination of a Safe State 
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 R1 R2 R3   R1 R2 R3   R1 R2 R3 
P1 3 2 2  P1 1 0 0  P1 2 2 2 

P2 6 1 3  P2 5 1 1  P2 1 0 2 
P3 3 1 4  P3 2 1 1  P3 1 0 3 
P4 4 2 2  P4 0 0 2  P4 4 2 0 

 Claim matrix C   Allocation matrix A   C – A 
 

R1 R2 R3  R1 R2 R3 

9 3 6  1 1 2 
Resource vector R  Available vector V 

 
(a) Initial state 

 
 R1 R2 R3   R1 R2 R3   R1 R2 R3 

P1 3 2 2  P1 2 0 1  P1 1 2 1 
P2 6 1 3  P2 5 1 1  P2 1 0 2 
P3 3 1 4  P3 2 1 1  P3 1 0 3 

P4 4 2 2  P4 0 0 2  P4 4 2 0 
 Claim matrix C   Allocation matrix A   C – A 

 
R1 R2 R3  R1 R2 R3 
9 3 6  0 1 1 

Resource vector R  Available vector V 
 

(b) P1 requests one unit each of R1 and R3 
 

Figure 6.8  Determination of an Unsafe State 
Figure 6.8  Determination of an Unsafe State 
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n It is not necessary to preempt and rollback processes, as in 
deadlock detection 

n It is less restrictive than deadlock prevention
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• Maximum resource requirement for each process 
must be stated in advance

• Processes under consideration must be independent 
and with no synchronization requirements

• There must be a fixed number of  resources to allocate

• No process may exit while holding resources
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Deadlock Strategies

Deadlock prevention strategies are very 
conservative 

• Limit access to resources by imposing restrictions on 
processes

Deadlock detection strategies do the 
opposite

• Resource requests are granted whenever possible
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Deadline Detection 
Algorithm

§ A check for deadlock can 
be made as frequently as 
each resource request or, 
less frequently, depending 
on how likely it is for a 
deadlock to occur

Advantages:
• It leads to early 

detection
• The algorithm is 

relatively simple

Disadvantage
• Frequent checks 

consume 
considerable 
processor time
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Recovery Strategies 

n Abort all deadlocked processes

n Back up each deadlocked process to some previously defined 
checkpoint and restart all processes

n Successively abort deadlocked processes until deadlock no longer 
exists

n Successively preempt resources until deadlock no longer exists
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Integrated Deadlock 
Strategy
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n Rather than attempting to design an OS facility that employs only one of  these 
strategies, it might be more efficient to use different strategies in different 
situations

n Group resources into a number of  different resource classes
n Use the linear ordering strategy defined previously for the prevention of  circular wait to 

prevent deadlocks between resource classes
n Within a resource class, use the algorithm that is most appropriate for that class

n Classes of  resources
n Swappable space

n Blocks of  memory on secondary storage for use in swapping processes

n Process resources
n Assignable devices, such as tape drives, and files

n Main memory
n Assignable to processes in pages or segments

n Internal resources
n Such as I/O channels



Class Strategies

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 

n Within each class the following strategies could be used:
n Swappable space

n Prevention of  deadlocks by requiring that all of  the required resources that may be 
used be allocated at one time, as in the hold-and-wait prevention strategy

n This strategy is reasonable if  the maximum storage requirements are known

n Process resources
n Avoidance will often be effective in this category, because it is reasonable to expect 

processes to declare ahead of  time the resources that they will require in this class

n Prevention by means of  resource ordering within this class is also possible

n Main memory
n Prevention by preemption appears to be the most appropriate strategy for main 

memory

n When a process is preempted, it is simply swapped to secondary memory, freeing 
space to resolve the deadlock

n Internal resources
n Prevention by means of  resource ordering can be used



Dining Philosophers Problem

§No two 
philosophers can 
use the same 
fork at the same 
time (mutual 
exclusion)

§No philosopher 
must starve to 
death (avoid 
deadlock and 
starvation)

P3

Figure 6.11   Dining Arrangement for Philosophers
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P4

P1
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/* program diningphilosophers */ 
semaphore fork [5] = {1}; 
int i; 
void philosopher (int i) 
{  
 while (true) { 
  think(); 
  wait (fork[i]); 
  wait (fork [(i+1) mod 5]); 
  eat(); 
  signal(fork [(i+1) mod 5]); 
  signal(fork[i]); 
 } 
} 
void main()  
{ 
 parbegin (philosopher (0), philosopher (1), philosopher 
(2),  
  philosopher (3), philosopher (4)); 
 } 

 

Figure 6.12      A First Solution to the Dining Philosophers Problem 
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/* program diningphilosophers */ 
semaphore fork[5] = {1}; 
semaphore room = {4}; 
int i; 
void philosopher (int i) 
{ 
 while (true) { 
  think(); 
  wait (room); 
  wait (fork[i]); 
  wait (fork [(i+1) mod 5]); 
  eat(); 
  signal (fork [(i+1) mod 5]); 
  signal (fork[i]); 
  signal (room); 
 } 
 
} 
void main()  
{ 
 parbegin (philosopher (0), philosopher (1), philosopher (2),  
   philosopher (3), philosopher (4)); 
} 

Figure 6.13   A Second Solution to the Dining Philosophers Problem 
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monitor dining_controller; 
cond ForkReady[5]; /* condition variable for synchronization */ 
boolean fork[5] = {true}; /* availability status of each fork */ 
 
void get_forks(int pid) /* pid is the philosopher id number */ 
{ 
 int left = pid; 
 int right = (++pid) % 5; 
 /*grant the left fork*/ 
 if (!fork[left]) 
  cwait(ForkReady[left]); /* queue on condition variable */ 
 fork[left] = false; 
 /*grant the right fork*/ 
 if (!fork[right]) 
  cwait(ForkReady[right]); /* queue on condition variable */ 
 fork[right] = false: 
} 
void release_forks(int pid) 
{ 
 int left = pid; 
 int right = (++pid) % 5; 
 /*release the left fork*/ 
 if (empty(ForkReady[left]) /*no one is waiting for this fork */ 
  fork[left] = true; 
 else /* awaken a process waiting on this fork */ 
  csignal(ForkReady[left]); 
 /*release the right fork*/ 
 if (empty(ForkReady[right]) /*no one is waiting for this fork */ 
  fork[right] = true; 
 else /* awaken a process waiting on this fork */ 
  csignal(ForkReady[right]); 
} 
 
 
void philosopher[k=0 to 4] /* the five philosopher clients */ 
{ 
 while (true) { 
  <think>; 
  get_forks(k); /* client requests two forks via monitor */ 
  <eat spaghetti>; 
  release_forks(k); /* client releases forks via the monitor */ 
 } 
} 

Figure 6.14   

A Solution 

to the 

Dining 

Philosophers 

Problem 

Using a 

Monitor 
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UNIX Concurrency Mechanisms

n UNIX provides a variety of  mechanisms for interprocessor 
communication and synchronization including:

Pipes Messages Shared 
memory

Semaphores Signals

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 



Pipes

n Circular buffers allowing two processes to 
communicate on the producer-consumer model

n First-in-first-out queue, written by one 
process and read by another

• Named
• Unnamed

Two types:
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Messages

n A block of  bytes with an accompanying type

n UNIX provides msgsnd and msgrcv system calls for processes to 
engage in message passing 

n Associated with each process is a message queue, which 
functions like a mailbox
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Shared Memory

n Fastest form of  interprocess communication

n Common block of  virtual memory shared by 
multiple processes

n Permission is read-only or read-write for a process

n Mutual exclusion constraints are not part of  the 
shared-memory facility but must be provided by the 
processes using the shared memory
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n Generalization of  the semWait and semSignal
primitives

n No other process may access the semaphore until all operations have 
completed

Consists of:

• Current value of  the semaphore
• Process ID of  the last process to operate on the 

semaphore
• Number of  processes waiting for the semaphore 

value to be greater than its current value
• Number of  processes waiting for the semaphore 

value to be zero
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n A software mechanism that informs a process of  the occurrence of  
asynchronous events

n Similar to a hardware interrupt, but does not employ priorities

n A signal is delivered by updating a field in the process table for the 
process to which the signal is being sent

n A process may respond to a signal by:
n Performing some default action

n Executing a signal-handler function

n Ignoring the signal
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Value Name Description 
01 SIGHUP Hang up; sent to process when kernel assumes that the 

user of that process is doing no useful work 
02 SIGINT Interrupt 
03 SIGQUIT Quit; sent by user to induce halting of process and 

production of core dump 
04 SIGILL Illegal instruction 
05 SIGTRAP Trace trap; triggers the execution of code for process 

tracing 
06 SIGIOT IOT instruction 
07 SIGEMT EMT instruction 
08 SIGFPE Floating-point exception 
09 SIGKILL Kill; terminate process 
10 SIGBUS Bus error 
11 SIGSEGV Segmentation violation; process attempts to access 

location outside its virtual address space 
12 SIGSYS Bad argument to system call 
13 SIGPIPE Write on a pipe that has no  readers attached to it 
14 SIGALRM Alarm clock; issued when a process wishes to receive a 

signal after a period of time 
15 SIGTERM Software termination 
16 SIGUSR1 User-defined signal 1 
17 SIGUSR2 User-defined signal 2 
18 SIGCHLD Death of a child 
19 SIGPWR Power failure 

 

Table 6.2  

UNIX Signals

(Table can be found on page 288 in textbook)
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Atomic Operations

n Atomic operations execute without interruption and 
without interference

n Simplest of  the approaches to kernel synchronization

n Two types: Integer 
Operations

Operate on an 
integer variable

Typically used to 
implement 
counters

Bitmap 
Operations

Operate on one 
of  a sequence of  

bits at an 
arbitrary memory 

location 
indicated by a 

pointer variable
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Atomic Integer Operations 
ATOMIC_INIT (int i) At declaration: initialize an atomic_t 

to i 
int atomic_read(atomic_t *v) Read integer value of v 
void atomic_set(atomic_t *v, int i) Set the value of v to integer i 
void atomic_add(int i, atomic_t *v) Add i to v 
void atomic_sub(int i, atomic_t *v) Subtract i from v 
void atomic_inc(atomic_t *v) Add 1 to v 
void atomic_dec(atomic_t *v) Subtract 1 from v 
int atomic_sub_and_test(int i, atomic_t 
*v) 

Subtract i from v; return 1 if the 
result is zero; return 0 otherwise 

int atomic_add_negative(int i, atomic_t 
*v) 

Add i to v; return 1 if the result is 
negative; return 0 otherwise (used for 
implementing semaphores) 

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the 
result is zero; return 0 otherwise 

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is 
zero; return 0 otherwise 

Atomic Bitmap Operations 
void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by 

addr 
void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to 

by addr 
void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to 

by addr 
int test_and_set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by 

addr; return the old bit value 
int test_and_clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to 

by addr; return the old bit value 
int test_and_change_bit(int nr, void 
*addr) 

Invert bit nr in the bitmap pointed to 
by addr; return the old bit value 

int test_bit(int nr, void *addr) Return the value of bit nr in the 
bitmap pointed to by addr 

 

Table 6.2    

Linux 
Atomic 

Operations

(Table can be found on page 
289 in textbook)
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Spinlocks

n Most common technique for protecting a critical section in 
Linux

n Can only be acquired by one thread at a time
n Any other thread will keep trying (spinning) until it can acquire the lock

n Built on an integer location in memory that is checked by each 
thread before it enters its critical section

n Effective in situations where the wait time for acquiring a lock is 
expected to be very short

n Disadvantage:
n Locked-out threads continue to execute in a busy-waiting mode
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void spin_lock(spinlock_t *lock) Acquires the specified lock, 
spinning if needed until it is 
available 

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables 
interrupts on the local processor 

void spin_lock_irqsave(spinlock_t *lock, 
unsigned long flags) 

Like spin_lock_irq, but also 
saves the current interrupt state 
in flags 

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables 
the execution of all bottom 
halves 

void spin_unlock(spinlock_t *lock) Releases given lock 

void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables 
local interrupts 

void spin_unlock_irqrestore(spinlock_t 
*lock, unsigned long flags) 

Releases given lock and restores 
local interrupts to given 
previous state 

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables 
bottom halves 

void spin_lock_init(spinlock_t *lock) Initializes given spinlock 
int spin_trylock(spinlock_t *lock) Tries to acquire specified lock; 

returns nonzero if lock is 
currently held and zero otherwise 

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is 
currently held and zero otherwise 

 
Table 6.4    Linux Spinlocks
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page 291 in textbook)



Semaphores

n User level:

§ Linux provides a semaphore interface corresponding to that in 
UNIX SVR4

n Internally:

§ Implemented as functions within the kernel and are more efficient 
than user-visable semaphores

n Three types of  kernel semaphores:

n Binary semaphores

n Counting semaphores

n Reader-writer semaphores
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Traditional Semaphores 

void sema_init(struct semaphore 
*sem, int count) 

Initializes the dynamically created 
semaphore to the given count 

void init_MUTEX(struct semaphore 
*sem) 

Initializes the dynamically created 
semaphore with a count of 1 (initially 
unlocked) 

void init_MUTEX_LOCKED(struct 
semaphore *sem) 

Initializes the dynamically created 
semaphore with a count of 0 (initially 
locked) 

void down(struct semaphore *sem) Attempts to acquire the given semaphore, 
entering uninterruptible sleep if 
semaphore is unavailable 

int down_interruptible(struct 
semaphore *sem) 

Attempts to acquire the given semaphore, 
entering interruptible sleep if semaphore 
is unavailable; returns -EINTR value if a 
signal other than the result of an up 
operation is received 

int down_trylock(struct semaphore 
*sem) 

Attempts to acquire the given semaphore, 
and returns a nonzero value if semaphore 
is unavailable 

void up(struct semaphore *sem) Releases the given semaphore 

Reader-Writer Semaphores 
void init_rwsem(struct 
rw_semaphore, *rwsem) 

Initializes the dynamically created 
semaphore with a count of 1 

void down_read(struct rw_semaphore, 
*rwsem) 

Down operation for readers 

void up_read(struct rw_semaphore, 
*rwsem) 

Up operation for readers 

void down_write(struct 
rw_semaphore, *rwsem) 

Down operation for writers 

void up_write(struct rw_semaphore, 
*rwsem) 

Up operation for writers 

 

Table 6.5 

Linux 
Semaphore

s
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Readers/Writer Locks

n Allows multiple threads to have simultaneous 
read-only access to an object protected by the 
lock

n Allows a single thread to access the object for 
writing at one time, while excluding all readers
§ When lock is acquired for writing it takes on the status of  
write lock

§ If  one or more readers have acquired the lock its status is 
read lock
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A condition variable 
is used to wait until 

a particular 
condition is true 

Condition variables 
must be used in 

conjunction with a 
mutex lock
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