
Chapter 6
Concurrency:
Deadlock and

Starvation

Operating
Systems:
Internals

and Design
Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ninth Edition
By William Stallings

n The permanent blocking of a set of processes that
either compete for system resources or
communicate with each other

n A set of processes is deadlocked when each
process in the set is blocked awaiting an event
that can only be triggered by another blocked
process in the set

n Permanent because none of the events is
ever triggered

n No efficient solution in the general case

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

c b

d a

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

4 4

1

1

3

32 2

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B
Required

B Required

A
Required

A
Required

Release A

Release
A

Release B

Release
B

deadlock
inevitable

P and Q
want A

P and Q
want B

1 2

3

4
5

6

Figure 6.2 Example of Deadlock

= possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

= deadlock-inevitable region

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B
Required

B Required

A
Required

A Required

= possible progress path of P and Q.
 Horizontal portion of path indicates P is executing and Q is waiting.
 Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

Release A

Release
A

Release B

Release
B

1 2 3

4

5

6

Figure 6.3 Example of No Deadlock

P and Q
want A

P and Q
want B

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Reusable
• Can be safely used by only one process at a time

and is not depleted by that use
• Processors, I/O channels, main and secondary

memory, devices, and data structures such as
files, databases, and semaphores

Consumable
• One that can be created (produced) and

destroyed (consumed)
• Interrupts, signals, messages, and

information
• In I/O buffers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Example 2:
Memory Request

n Space is available for allocation of 200Kbytes, and
the following sequence of events occur:

n Deadlock occurs if both processes progress to their
second request

P1
. . .

. . .
Request 80 Kbytes;

Request 60 Kbytes;

P2
. . .

. . .
Request 70 Kbytes;

Request 80 Kbytes;

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Consumable Resources
Deadlock

n Consider a pair of processes, in which each process attempts to receive a
message from the other process and then send a message to the other
process:

n Deadlock occurs if the Receive is blocking

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Approaches

n Deadlock avoidance

n Do not grant a resource
request if this allocation
might lead to deadlock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Deadlock detection

n Grant resource requests
when possible, but
periodically check for the
presence of deadlock and
take action to recover

n There is no single effective
strategy that can deal with all
types of deadlock

n Three approaches are common:

n Deadlock prevention

n Disallow one of the three
necessary conditions for
deadlock occurrence, or
prevent circular wait
condition from happening

P1

P1

P2

Rb

Ra

Ra

Request
s

Request
s

Held by

Held by

(c) Circular wait

(a) Resouce is requested

P1 P2

Rb

Ra

Request
s

Request
s

Held by

Held by

(d) No deadlock

P1 Ra

(b) Resource is held

Figure 6.5 Examples of Resource Allocation Graphs

Requests Held by

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

P1

Ra

P2

Rb

P3

Rc

P4

Rd

Figure 6.6 Resource Allocation Graph for Figure 6.1b

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Conditions for Deadlock

Mutual
Exclusion

• Only one
process may
use a
resource at a
time

• No process
may access a
resource until
that has been
allocated to
another
process

Hold-and-
Wait

• A process
may hold
allocated
resources
while
awaiting
assignment
of other
resources

No Pre-emption

• No resource
can be
forcibly
removed
from a
process
holding it

Circular Wait

• A closed
chain of
processes
exists, such
that each
process holds
at least one
resource
needed by
the next
process in
the chain

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Design a system in such a way that the possibility of
deadlock is excluded

n Two main methods:
n Indirect

n Prevent the occurrence of one of the three necessary conditions

n Direct
n Prevent the occurrence of a circular wait

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Mutual exclusion
n If access to a resource requires mutual exclusion, then mutual

exclusion must be supported by the OS

n Some resources, such as files, may allow multiple accesses for
reads but only exclusive access for writes

n Even in this case, deadlock can occur if more than one process
requires write permission

n Hold and wait
n Can be prevented by requiring that a process request all of its

required resources at one time and blocking the process until all
requests can be granted simultaneously

© 2017 Pearson Education, Inc.,, NJ. All rights reserved. Hoboken

n No Preemption
n If a process holding certain resources is denied a further request,

that process must release its original resources and request them
again

n OS may preempt the second process and require it to release its
resources

n Circular Wait
n The circular wait condition can be prevented by defining a linear

ordering of resource types

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Allows the three necessary conditions but makes judicious
choices to assure that the deadlock point is never reached

n A decision is made dynamically whether the current
resource allocation request will, if granted, potentially
lead to a deadlock

n Allows the three necessary conditions but makes
judicious choices to assure that the deadlock
point is never reached

n Requires knowledge of future process requests

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock
Avoidance

Process Initiation
Denial
• Do not start a

process if its
demands might lead
to deadlock

Resource
Allocation Denial
• Do not grant an

incremental resource
request to a process if
this allocation might
lead to deadlock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Referred to as the banker’s algorithm

n State of the system reflects the current allocation of
resources to processes

n Safe state is one in which there is at least one sequence of
resource allocations to processes that does not result in a
deadlock

n Unsafe state is a state that is not safe

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2
P2 6 1 3 P2 6 1 2 P2 0 0 1
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 0 1 1
Resource vector R Available vector V

(a) Initial state

Figure 6.7 Determination of a Safe State

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 6 2 3
Resource vector R Available vector V

(b) P2 runs to completion

Figure 6.7 Determination of a Safe State

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 0 0 0 P1 0 0 0 P1 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 7 2 3
Resource vector R Available vector V

(c) P1 runs to completion

Figure 6.7 Determination of a Safe State

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 0 0 0 P1 0 0 0 P1 0 0 0
P2 0 0 0 P2 0 0 0 P2 0 0 0
P3 0 0 0 P3 0 0 0 P3 0 0 0
P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 9 3 4
Resource vector R Available vector V

(d) P3 runs to completion
(d) P3 runs to completion

Figure 6.7 Determination of a Safe State

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 R1 R2 R3 R1 R2 R3 R1 R2 R3
P1 3 2 2 P1 1 0 0 P1 2 2 2

P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3
P4 4 2 2 P4 0 0 2 P4 4 2 0

 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3

9 3 6 1 1 2
Resource vector R Available vector V

(a) Initial state

 R1 R2 R3 R1 R2 R3 R1 R2 R3

P1 3 2 2 P1 2 0 1 P1 1 2 1
P2 6 1 3 P2 5 1 1 P2 1 0 2
P3 3 1 4 P3 2 1 1 P3 1 0 3

P4 4 2 2 P4 0 0 2 P4 4 2 0
 Claim matrix C Allocation matrix A C – A

R1 R2 R3 R1 R2 R3
9 3 6 0 1 1

Resource vector R Available vector V

(b) P1 requests one unit each of R1 and R3

Figure 6.8 Determination of an Unsafe State
Figure 6.8 Determination of an Unsafe State

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n It is not necessary to preempt and rollback processes, as in
deadlock detection

n It is less restrictive than deadlock prevention

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

• Maximum resource requirement for each process
must be stated in advance

• Processes under consideration must be independent
and with no synchronization requirements

• There must be a fixed number of resources to allocate

• No process may exit while holding resources

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadlock Strategies

Deadlock prevention strategies are very
conservative

• Limit access to resources by imposing restrictions on
processes

Deadlock detection strategies do the
opposite

• Resource requests are granted whenever possible

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Deadline Detection
Algorithm

§ A check for deadlock can
be made as frequently as
each resource request or,
less frequently, depending
on how likely it is for a
deadlock to occur

Advantages:
• It leads to early

detection
• The algorithm is

relatively simple

Disadvantage
• Frequent checks

consume
considerable
processor time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Recovery Strategies

n Abort all deadlocked processes

n Back up each deadlocked process to some previously defined
checkpoint and restart all processes

n Successively abort deadlocked processes until deadlock no longer
exists

n Successively preempt resources until deadlock no longer exists

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Integrated Deadlock
Strategy

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Rather than attempting to design an OS facility that employs only one of these
strategies, it might be more efficient to use different strategies in different
situations

n Group resources into a number of different resource classes
n Use the linear ordering strategy defined previously for the prevention of circular wait to

prevent deadlocks between resource classes
n Within a resource class, use the algorithm that is most appropriate for that class

n Classes of resources
n Swappable space

n Blocks of memory on secondary storage for use in swapping processes

n Process resources
n Assignable devices, such as tape drives, and files

n Main memory
n Assignable to processes in pages or segments

n Internal resources
n Such as I/O channels

Class Strategies

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Within each class the following strategies could be used:
n Swappable space

n Prevention of deadlocks by requiring that all of the required resources that may be
used be allocated at one time, as in the hold-and-wait prevention strategy

n This strategy is reasonable if the maximum storage requirements are known

n Process resources
n Avoidance will often be effective in this category, because it is reasonable to expect

processes to declare ahead of time the resources that they will require in this class

n Prevention by means of resource ordering within this class is also possible

n Main memory
n Prevention by preemption appears to be the most appropriate strategy for main

memory

n When a process is preempted, it is simply swapped to secondary memory, freeing
space to resolve the deadlock

n Internal resources
n Prevention by means of resource ordering can be used

Dining Philosophers Problem

§No two
philosophers can
use the same
fork at the same
time (mutual
exclusion)

§No philosopher
must starve to
death (avoid
deadlock and
starvation)

P3

Figure 6.11 Dining Arrangement for Philosophers

P0

P2

P4

P1

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

/* program diningphilosophers */
semaphore fork [5] = {1};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal(fork [(i+1) mod 5]);
 signal(fork[i]);
 }
}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher
(2),
 philosopher (3), philosopher (4));
 }

Figure 6.12 A First Solution to the Dining Philosophers Problem

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

/* program diningphilosophers */
semaphore fork[5] = {1};
semaphore room = {4};
int i;
void philosopher (int i)
{
 while (true) {
 think();
 wait (room);
 wait (fork[i]);
 wait (fork [(i+1) mod 5]);
 eat();
 signal (fork [(i+1) mod 5]);
 signal (fork[i]);
 signal (room);
 }

}
void main()
{
 parbegin (philosopher (0), philosopher (1), philosopher (2),
 philosopher (3), philosopher (4));
}

Figure 6.13 A Second Solution to the Dining Philosophers Problem

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

monitor dining_controller;
cond ForkReady[5]; /* condition variable for synchronization */
boolean fork[5] = {true}; /* availability status of each fork */

void get_forks(int pid) /* pid is the philosopher id number */
{
 int left = pid;
 int right = (++pid) % 5;
 /*grant the left fork*/
 if (!fork[left])
 cwait(ForkReady[left]); /* queue on condition variable */
 fork[left] = false;
 /*grant the right fork*/
 if (!fork[right])
 cwait(ForkReady[right]); /* queue on condition variable */
 fork[right] = false:
}
void release_forks(int pid)
{
 int left = pid;
 int right = (++pid) % 5;
 /*release the left fork*/
 if (empty(ForkReady[left]) /*no one is waiting for this fork */
 fork[left] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[left]);
 /*release the right fork*/
 if (empty(ForkReady[right]) /*no one is waiting for this fork */
 fork[right] = true;
 else /* awaken a process waiting on this fork */
 csignal(ForkReady[right]);
}

void philosopher[k=0 to 4] /* the five philosopher clients */
{
 while (true) {
 <think>;
 get_forks(k); /* client requests two forks via monitor */
 <eat spaghetti>;
 release_forks(k); /* client releases forks via the monitor */
 }
}

Figure 6.14

A Solution

to the

Dining

Philosophers

Problem

Using a

Monitor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

UNIX Concurrency Mechanisms

n UNIX provides a variety of mechanisms for interprocessor
communication and synchronization including:

Pipes Messages Shared
memory

Semaphores Signals

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Pipes

n Circular buffers allowing two processes to
communicate on the producer-consumer model

n First-in-first-out queue, written by one
process and read by another

• Named
• Unnamed

Two types:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Messages

n A block of bytes with an accompanying type

n UNIX provides msgsnd and msgrcv system calls for processes to
engage in message passing

n Associated with each process is a message queue, which
functions like a mailbox

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Shared Memory

n Fastest form of interprocess communication

n Common block of virtual memory shared by
multiple processes

n Permission is read-only or read-write for a process

n Mutual exclusion constraints are not part of the
shared-memory facility but must be provided by the
processes using the shared memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Generalization of the semWait and semSignal
primitives

n No other process may access the semaphore until all operations have
completed

Consists of:

• Current value of the semaphore
• Process ID of the last process to operate on the

semaphore
• Number of processes waiting for the semaphore

value to be greater than its current value
• Number of processes waiting for the semaphore

value to be zero

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n A software mechanism that informs a process of the occurrence of
asynchronous events

n Similar to a hardware interrupt, but does not employ priorities

n A signal is delivered by updating a field in the process table for the
process to which the signal is being sent

n A process may respond to a signal by:
n Performing some default action

n Executing a signal-handler function

n Ignoring the signal

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Value Name Description
01 SIGHUP Hang up; sent to process when kernel assumes that the

user of that process is doing no useful work
02 SIGINT Interrupt
03 SIGQUIT Quit; sent by user to induce halting of process and

production of core dump
04 SIGILL Illegal instruction
05 SIGTRAP Trace trap; triggers the execution of code for process

tracing
06 SIGIOT IOT instruction
07 SIGEMT EMT instruction
08 SIGFPE Floating-point exception
09 SIGKILL Kill; terminate process
10 SIGBUS Bus error
11 SIGSEGV Segmentation violation; process attempts to access

location outside its virtual address space
12 SIGSYS Bad argument to system call
13 SIGPIPE Write on a pipe that has no readers attached to it
14 SIGALRM Alarm clock; issued when a process wishes to receive a

signal after a period of time
15 SIGTERM Software termination
16 SIGUSR1 User-defined signal 1
17 SIGUSR2 User-defined signal 2
18 SIGCHLD Death of a child
19 SIGPWR Power failure

Table 6.2

UNIX Signals

(Table can be found on page 288 in textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Atomic Operations

n Atomic operations execute without interruption and
without interference

n Simplest of the approaches to kernel synchronization

n Two types: Integer
Operations

Operate on an
integer variable

Typically used to
implement
counters

Bitmap
Operations

Operate on one
of a sequence of

bits at an
arbitrary memory

location
indicated by a

pointer variable

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Atomic Integer Operations
ATOMIC_INIT (int i) At declaration: initialize an atomic_t

to i
int atomic_read(atomic_t *v) Read integer value of v
void atomic_set(atomic_t *v, int i) Set the value of v to integer i
void atomic_add(int i, atomic_t *v) Add i to v
void atomic_sub(int i, atomic_t *v) Subtract i from v
void atomic_inc(atomic_t *v) Add 1 to v
void atomic_dec(atomic_t *v) Subtract 1 from v
int atomic_sub_and_test(int i, atomic_t
*v)

Subtract i from v; return 1 if the
result is zero; return 0 otherwise

int atomic_add_negative(int i, atomic_t
*v)

Add i to v; return 1 if the result is
negative; return 0 otherwise (used for
implementing semaphores)

int atomic_dec_and_test(atomic_t *v) Subtract 1 from v; return 1 if the
result is zero; return 0 otherwise

int atomic_inc_and_test(atomic_t *v) Add 1 to v; return 1 if the result is
zero; return 0 otherwise

Atomic Bitmap Operations
void set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by

addr
void clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to

by addr
void change_bit(int nr, void *addr) Invert bit nr in the bitmap pointed to

by addr
int test_and_set_bit(int nr, void *addr) Set bit nr in the bitmap pointed to by

addr; return the old bit value
int test_and_clear_bit(int nr, void *addr) Clear bit nr in the bitmap pointed to

by addr; return the old bit value
int test_and_change_bit(int nr, void
*addr)

Invert bit nr in the bitmap pointed to
by addr; return the old bit value

int test_bit(int nr, void *addr) Return the value of bit nr in the
bitmap pointed to by addr

Table 6.2

Linux
Atomic

Operations

(Table can be found on page
289 in textbook)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Spinlocks

n Most common technique for protecting a critical section in
Linux

n Can only be acquired by one thread at a time
n Any other thread will keep trying (spinning) until it can acquire the lock

n Built on an integer location in memory that is checked by each
thread before it enters its critical section

n Effective in situations where the wait time for acquiring a lock is
expected to be very short

n Disadvantage:
n Locked-out threads continue to execute in a busy-waiting mode

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

void spin_lock(spinlock_t *lock) Acquires the specified lock,
spinning if needed until it is
available

void spin_lock_irq(spinlock_t *lock) Like spin_lock, but also disables
interrupts on the local processor

void spin_lock_irqsave(spinlock_t *lock,
unsigned long flags)

Like spin_lock_irq, but also
saves the current interrupt state
in flags

void spin_lock_bh(spinlock_t *lock) Like spin_lock, but also disables
the execution of all bottom
halves

void spin_unlock(spinlock_t *lock) Releases given lock

void spin_unlock_irq(spinlock_t *lock) Releases given lock and enables
local interrupts

void spin_unlock_irqrestore(spinlock_t
*lock, unsigned long flags)

Releases given lock and restores
local interrupts to given
previous state

void spin_unlock_bh(spinlock_t *lock) Releases given lock and enables
bottom halves

void spin_lock_init(spinlock_t *lock) Initializes given spinlock
int spin_trylock(spinlock_t *lock) Tries to acquire specified lock;

returns nonzero if lock is
currently held and zero otherwise

int spin_is_locked(spinlock_t *lock) Returns nonzero if lock is
currently held and zero otherwise

Table 6.4 Linux Spinlocks

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(Table can be found on
page 291 in textbook)

Semaphores

n User level:

§ Linux provides a semaphore interface corresponding to that in
UNIX SVR4

n Internally:

§ Implemented as functions within the kernel and are more efficient
than user-visable semaphores

n Three types of kernel semaphores:

n Binary semaphores

n Counting semaphores

n Reader-writer semaphores

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Traditional Semaphores

void sema_init(struct semaphore
*sem, int count)

Initializes the dynamically created
semaphore to the given count

void init_MUTEX(struct semaphore
*sem)

Initializes the dynamically created
semaphore with a count of 1 (initially
unlocked)

void init_MUTEX_LOCKED(struct
semaphore *sem)

Initializes the dynamically created
semaphore with a count of 0 (initially
locked)

void down(struct semaphore *sem) Attempts to acquire the given semaphore,
entering uninterruptible sleep if
semaphore is unavailable

int down_interruptible(struct
semaphore *sem)

Attempts to acquire the given semaphore,
entering interruptible sleep if semaphore
is unavailable; returns -EINTR value if a
signal other than the result of an up
operation is received

int down_trylock(struct semaphore
*sem)

Attempts to acquire the given semaphore,
and returns a nonzero value if semaphore
is unavailable

void up(struct semaphore *sem) Releases the given semaphore

Reader-Writer Semaphores
void init_rwsem(struct
rw_semaphore, *rwsem)

Initializes the dynamically created
semaphore with a count of 1

void down_read(struct rw_semaphore,
*rwsem)

Down operation for readers

void up_read(struct rw_semaphore,
*rwsem)

Up operation for readers

void down_write(struct
rw_semaphore, *rwsem)

Down operation for writers

void up_write(struct rw_semaphore,
*rwsem)

Up operation for writers

Table 6.5

Linux
Semaphore

s

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

(Table can be found on page
293 in textbook)

Readers/Writer Locks

n Allows multiple threads to have simultaneous
read-only access to an object protected by the
lock

n Allows a single thread to access the object for
writing at one time, while excluding all readers
§ When lock is acquired for writing it takes on the status of
write lock

§ If one or more readers have acquired the lock its status is
read lock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A condition variable
is used to wait until

a particular
condition is true

Condition variables
must be used in

conjunction with a
mutex lock

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n Principles of deadlock
n Reusable/consumable resources

n Resource allocation graphs

n Conditions for deadlock

n Deadlock prevention

n Mutual exclusion

n Hold and wait

n No preemption

n Circular wait

n Deadlock avoidance

n Process initiation denial

n Resource allocation denial

n Deadlock detection
n Deadlock detection algorithm

n Recovery

n Android interprocess communication

n Integrated deadlock strategy

n UNIX concurrency mechanisms

n Pipes

n Messages

n Shared memory

n Semaphores

n Signals

n Linux kernel concurrency mechanisms
n Atomic operations

n Spinlocks

n Semaphores

n Barriers

n Solaris thread synchronization primitives
n Mutual exclusion lock

n Semaphores

n Readers/writer lock

n Condition variables

n Windows concurrency mechanisms

n Wait functions

n Dispatcher objects

n Critical sections

n Slim reader-writer locks

n Lock-free synchronization

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

