CS 3113
(some) File I/O Details + Pipes

Resource Sharing Challenges

* With modern OSes, we have the opportunity to be performing many
tasks (executing many processes) at once

* In fact, your Linux instance has many processes executing right now
(try the top command; and ... ~c will get you out of it)

* Any time two processes try to access the same resource at the same
time, the potential exists for things going very wrong

* In some cases, the OS automatically addresses the resource
contention; in other cases, the processes must take special action
through the OS to ensure that problems do not occur

File System Example

Program pseudo-code:

1. If file FOO does not exist then:

2 Open the file for writing, creating 1t
3. Place data 1n the file

4 Close the file

e Each of these steps involves a system call

* Execution of this process can be interrupted at any time, allowing
another process to do work

Creating a File if it Does not Exist

Listing 5-1: Incorrect code to exclusively open a file

from fileio/bad_exclusive_open.c
fd = open(argv[1], O WRONLY); /* Open 1: check if file exists */
if (fd = -1) { /* Open succeeded */
printf("[PID %1d] File \"%s\" already exists\n",
(long) getpid(), argv[1]);

close(fd);
} else {
if (errno !'= ENOENT) { /* Failed for unexpected reason */
errExit("open");
} else {

/* WINDOW FOR FAILURE */
fd = open(argv[1], O WRONLY | O CREAT, S IRUSR | S IWUSR);
if (fd == -1)

errExit("open");

printf("[PID %1d] Created file \"%s\" exclusively\n",
(long) getpid(), argv[1]); /* MAY NOT BE TRUE! */

CG and AHF: Introduction to Operating Systems , . .
rom tileio/bad_exclusive open.c

Multiple
Processes

* Both accessing the same
resource

* Race condition: outcome
depends on who arrives
first

* Bug if A is interrupted
after processing the first
open & B jumps in

e Will also see the term
synchronization problem

Process A

{

open(..., O WRONLY);

open() fails

time slice

(—:xpi res

|
[
|
[
[
[
[
[
|
[
[
|
|
|
|
|
|) .
I time slice

l:' begins

open(..., O WRONLY
| 0 CREAT, ...);

l open() succeeds

—| |

Process B

time slice
begins

i

open(..., O WRONLY);

lﬂpm () fails

open(..., 0 WRONLY
| O CREAT, ...);

open() succeeds,
file created

time slice

[|-

ends '

Key
Executing Waiting

|
on CPU for CPU

Figure 5-1: Failing to exclusively create a file

Atomicity

* There are many situations where access to a common resource
involves a sequence of operations that cannot be interrupted.

* We want to treat these operations atomically (i.e., that they cannot be
broken apart)

* These are called critical sections

* Because this issue comes up in many different ways in an OS, we will
find a range of context-specific solutions to this problem

Atomicity for the File Existence/Creation
Operation

Solution: use a single open():
int fid = open(argv([1l], O WRONLY | O CREAT | O EXCL,
S IRUSR | S IWUSR);

* The system call is executed atomically

e fid < O: failure on file creation

» Already exists (so another process owns the file), or other failure, e.g.
directory doesn’t exist

* fid >= 0: file was created successfully

A Note of Caution

* For file system system calls, atomicity is a function of both the OS and
the file system

* Local files are managed by your OS, so if it handles EXCL correctly (any
POSIX OS will), then you are okay

* For files located on remote servers (e.g., Samba, NFS, ZFS), atomicity
must also be enforced on those servers & they have each made their
own decisions

... S0 tread cautiously

File Descriptors vs File Pointers

* File descriptor:
* int type that references a table of open streams

» Can reference files, pipes or sockets (more on the middle soon; latter is for
inter-process communication)

* Access through system calls: open(), read(), write(), close() ...

* File pointer
* FILE type defined in stdio.h (it is a struct)
* Includes the file descriptor, but adds buffering and other features

* Access through the stdio library: fopen(), fread(), fwrite(), fclose(), fprintf(),
fscanf()

* When working with files, this is the preferred interface

File Pointer Example

#include <stdio.h>

int main(i1nt argc, char** argv)
{
FILE* fp = fopen(argv([1l], "w");
if (fp == NULL) {
printf ("Error opening file.\n");
telse(
fprintf (fp, "Foo bar: %s\n", argv[l]):
fclose (fp) ;

Another File Open Function ...

FILE *freopen (const char *path, const char *mode, FILE *stream);

* Opens the specified file and associates it with the <stream> FILE
* If <stream> is already an open file, then it is closed first
* Returns <stream> if successful

Useful for substituting a file for the stdin stream

Flushing Streams

* Because FILE streams are buffered, a fprintf () does not
necessarily affect the file immediately

* Instead, the bytes are dropped into a buffer; at some point the library
will decide to move the bytes from the buffer to the file

e fflush (fp) will immediately force all bytes in the buffer to the
file

Creating a New Process: the Basics

System call: fork()
e Defined in unistd.h

* Creates a duplicate of the calling process: copy of all of the data
 All of the file descriptors are copied!

e Differences between the two processes include:
* The child process has a new process id (PID)
* In the child process, fork() returns zero
* In the parent process, fork() returns the PID of the child

fork() demo...

CG and AHF: Introduction to Operating Systems

File Descriptors to Files (or Streams)

What do we need to know about an open file (or other stream)?

File Descriptors to Files (or Streams)

What do we need to know about an open file (or other stream)?

* Type of the data & its location. If a file:
* Where on the storage device?
 What are the access permissions?
* File size
* Timestamps (access, creation)

* What part of the file are we accessing now? (the offset)

* How are we accessing the file (including read vs write, and append,
creation)

File Descriptors to Files (or Streams):
Three Levels of Representation

Open file table
(system-wide)

Process A
File descriptor table

fd | file
flags | ptr
fdo -
fd 1 ~
fd2 \

/|

fd 20 7

Process B
File descriptor table

fd | file
flags | ptr

fd0
fd 1
fd 2
fd3]

NN

Figure 5-2: Relationship between file descriptors,

23

73

86

file
offset

status
flags

inode
Ptl’

224

1976

5139

I-node table
(system-wide)

file
t}’PE‘

file

locks | ™

open file descriptions, and i-nodes

Copying a File Descriptor

* In some cases, it is useful for a process to be able to refer to the same
file/stream using two different file descriptors

* For example, if we want output written to both stdout and stderr to appear
on stderr

 Allocate the first available fd & configure it to point to the same
resource as oldfd:

newfd = dup (oldfd)

* Close newfd (if it is open) and allocate it to point to oldfd:
newfd = dup2 (oldfd, newfd)

Reading and Writing

char buf[20]
int n = read (0, buf, D)

* Attempts to read the next 5 bytes from stdin (assuming there are 5
bytes before the EOF)

* Moves the offset by 5 to the right (again, if there are 5)
e Returns the number actually read
 Blocks (by default) if there are no bytes to read

oread() / pwrite()

char buf[20];
int n = pread (0, buf, 5, 200);

* Remember the current offset

* Change the offset to 200

* Read 5 bytes (if the exist) into buf

* Change the offset back to the original

* These operations are all done atomically!

* Multiple threads/processes can all access a w/r file through the same fd and
yet not interfere with one-another

CG and AHF: Introduction to Operating Systems

Pipes

» Simple form of inter-process communication (IPC)

* Generally, one process has access to the input to the pipe, while
another process has access to the output of the pipe

 Unidirectional. If we need bidirectional communication, then we
need a 2" pipe or a different form of IPC

* Pipes provide a buffer for written data until the other process can
read them

* Pipes are identified using file descriptors, so the standard FD
operators can be used: read(), write(), close()...

Typical Use

* Parent process creates the pipe: this results in both an input and an
output file descriptor

* Parent forks a child process, which also has access to the pipe

* Parent and child each close one of their input/output pipe file
descriptors

* The writer then uses write() to send bytes into the pipe
* The reader then uses read() to pull bytes out of the pipe

The bytes can be anything!

