
CS 3113
(some) File I/O Details + Pipes

Resource Sharing Challenges

• With modern OSes, we have the opportunity to be performing many
tasks (executing many processes) at once

• In fact, your Linux instance has many processes executing right now
(try the top command; and … ^c will get you out of it)

• Any time two processes try to access the same resource at the same
time, the potential exists for things going very wrong

• In some cases, the OS automatically addresses the resource
contention; in other cases, the processes must take special action
through the OS to ensure that problems do not occur

CG and AHF: Introduction to Operating Systems

File System Example

Program pseudo-code:

1. If file FOO does not exist then:

2. Open the file for writing, creating it

3. Place data in the file

4. Close the file

• Each of these steps involves a system call

• Execution of this process can be interrupted at any time, allowing
another process to do work

CG and AHF: Introduction to Operating Systems

Creating a File if it Does not Exist

CG and AHF: Introduction to Operating Systems

Multiple
Processes

CG and AHF: Introduction to Operating Systems

• Both accessing the same
resource

• Race condition: outcome
depends on who arrives
first

• Bug if A is interrupted
after processing the first
open & B jumps in

• Will also see the term
synchronization problem

Atomicity

• There are many situations where access to a common resource
involves a sequence of operations that cannot be interrupted.
• We want to treat these operations atomically (i.e., that they cannot be

broken apart)

• These are called critical sections

• Because this issue comes up in many different ways in an OS, we will
find a range of context-specific solutions to this problem

CG and AHF: Introduction to Operating Systems

Atomicity for the File Existence/Creation
Operation
Solution: use a single open():

int fid = open(argv[1], O_WRONLY | O_CREAT | O_EXCL,

S_IRUSR | S_IWUSR);

• The system call is executed atomically

• fid < 0: failure on file creation
• Already exists (so another process owns the file), or other failure, e.g.

directory doesn’t exist

• fid >= 0: file was created successfully

CG and AHF: Introduction to Operating Systems

A Note of Caution

• For file system system calls, atomicity is a function of both the OS and
the file system

• Local files are managed by your OS, so if it handles EXCL correctly (any
POSIX OS will), then you are okay

• For files located on remote servers (e.g., Samba, NFS, ZFS), atomicity
must also be enforced on those servers & they have each made their
own decisions

… so tread cautiously

CG and AHF: Introduction to Operating Systems

File Descriptors vs File Pointers

• File descriptor:
• int type that references a table of open streams

• Can reference files, pipes or sockets (more on the middle soon; latter is for
inter-process communication)

• Access through system calls: open(), read(), write(), close() …

• File pointer
• FILE type defined in stdio.h (it is a struct)

• Includes the file descriptor, but adds buffering and other features

• Access through the stdio library: fopen(), fread(), fwrite(), fclose(), fprintf(),
fscanf()

• When working with files, this is the preferred interface

CG and AHF: Introduction to Operating Systems

File Pointer Example

#include <stdio.h>

int main(int argc, char** argv)

{

FILE* fp = fopen(argv[1], "w");

if(fp == NULL){

printf("Error opening file.\n");

}else{

fprintf(fp, "Foo bar: %s\n", argv[1]);

fclose(fp);

}

}

CG and AHF: Introduction to Operating Systems

Another File Open Function …

FILE *freopen(const char *path, const char *mode, FILE *stream);

• Opens the specified file and associates it with the <stream> FILE

• If <stream> is already an open file, then it is closed first

• Returns <stream> if successful

Useful for substituting a file for the stdin stream

CG and AHF: Introduction to Operating Systems

Flushing Streams

• Because FILE streams are buffered, a fprintf() does not
necessarily affect the file immediately

• Instead, the bytes are dropped into a buffer; at some point the library
will decide to move the bytes from the buffer to the file

• fflush(fp) will immediately force all bytes in the buffer to the
file

CG and AHF: Introduction to Operating Systems

Creating a New Process: the Basics

System call: fork()

• Defined in unistd.h

• Creates a duplicate of the calling process: copy of all of the data
• All of the file descriptors are copied!

• Differences between the two processes include:
• The child process has a new process id (PID)

• In the child process, fork() returns zero

• In the parent process, fork() returns the PID of the child

CG and AHF: Introduction to Operating Systems

fork() demo…

CG and AHF: Introduction to Operating Systems

File Descriptors to Files (or Streams)

What do we need to know about an open file (or other stream)?

CG and AHF: Introduction to Operating Systems

File Descriptors to Files (or Streams)

What do we need to know about an open file (or other stream)?

• Type of the data & its location. If a file:
• Where on the storage device?

• What are the access permissions?

• File size

• Timestamps (access, creation)

• What part of the file are we accessing now? (the offset)

• How are we accessing the file (including read vs write, and append,
creation)

CG and AHF: Introduction to Operating Systems

File Descriptors to Files (or Streams):
Three Levels of Representation

CG and AHF: Introduction to Operating Systems

Copying a File Descriptor

• In some cases, it is useful for a process to be able to refer to the same
file/stream using two different file descriptors
• For example, if we want output written to both stdout and stderr to appear

on stderr

• Allocate the first available fd & configure it to point to the same
resource as oldfd:

newfd = dup(oldfd)

• Close newfd (if it is open) and allocate it to point to oldfd:

newfd = dup2(oldfd, newfd)

CG and AHF: Introduction to Operating Systems

Reading and Writing

char buf[20]

int n = read(0, buf, 5)

• Attempts to read the next 5 bytes from stdin (assuming there are 5
bytes before the EOF)

• Moves the offset by 5 to the right (again, if there are 5)

• Returns the number actually read

• Blocks (by default) if there are no bytes to read

CG and AHF: Introduction to Operating Systems

pread() / pwrite()
char buf[20];

int n = pread(0, buf, 5, 200);

• Remember the current offset

• Change the offset to 200

• Read 5 bytes (if the exist) into buf

• Change the offset back to the original

• These operations are all done atomically!
• Multiple threads/processes can all access a w/r file through the same fd and

yet not interfere with one-another

CG and AHF: Introduction to Operating Systems

CG and AHF: Introduction to Operating Systems

Pipes

• Simple form of inter-process communication (IPC)

• Generally, one process has access to the input to the pipe, while
another process has access to the output of the pipe

• Unidirectional. If we need bidirectional communication, then we
need a 2nd pipe or a different form of IPC

• Pipes provide a buffer for written data until the other process can
read them

• Pipes are identified using file descriptors, so the standard FD
operators can be used: read(), write(), close()…

CG and AHF: Introduction to Operating Systems

Typical Use

• Parent process creates the pipe: this results in both an input and an
output file descriptor

• Parent forks a child process, which also has access to the pipe

• Parent and child each close one of their input/output pipe file
descriptors

• The writer then uses write() to send bytes into the pipe

• The reader then uses read() to pull bytes out of the pipe

The bytes can be anything!

CG and AHF: Introduction to Operating Systems

