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Data Storage Challenges

For any storage system, we have to answer questions such as:
e How will new data be stored? How do we select its location?

* When we want to retrieve data, how do we find this data and access
it?

What matters:

* Efficiency in storage and access
* Integrity

* Volume of data

* Ease of access, even when faced with many different physical
implementations



The Type of Application Matters

Different applications have different requirements for storage:
* Data collection: quickly storing data when it arrives in big bursts

* Databases: often highly-structured data
* Rapid look-up by key (or multiple keys)

* Many other apps: semi-structured



File Systems are About Abstraction
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File/Directory Permissions
. Shell: 15 -1

 Nominal permissions: read (r), write (w), execute (x)
 x for a directory means that one can access the details of the directory

* Three different permission sets:
» User (owner) of the file/directory. A user ID is associated with object
* Group ownership of the file/directory. A group ID is also associated with the
object
e Other ownership (any user).



Disks

 Block-type device: data are read/written in fixed-sized groups of bytes
(blocks).

* Not uncommon to have blocks of 512, 1024 or 4096 bytes



Disks

Figure 14-1 shows the relationship between disk partitions and file systems, and
shows the parts of a (generic) file system.
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Figure 14-1: Layout of disk partitions and a file system



Partition Layout

* Boot block: can contain the first information that a computer needs
to boot into an OS

* Superblock: data about the partition: size of the individual blocks, size
of the i-node table and size of the file system

* |-node table: one entry for each directory or file represented in the
file system

e Data blocks: data for files and directories
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Figure 18-1: Relationship between i-node and directory structures for the file /etc/passwd



struct stat {

dev_t
ino_t
mode_t
nlink t
uid_t
gid_t
dev_t
off t
blksize_t
blkent t
time_t
time_t
time_t

st_dev;
st_ino;
st_mode;
st _nlink;
st_uid;
st_gid;
st_rdev;
st_size;

st_blksize;

st_blocks;
st_atime;
st_mtime;
st_ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

i-node

I-node table File data

number
(data blocks)
2 UID=root | GID=root
type=directory

ID of device containing file */ .
inode number */ / dlreCtory
protection */ -
number of hard links */ =
user ID of owner */ tmp 2
group ID of owner */ s -
device ID (if special file) */ ete 7
total size, in bytes */ ’Fﬂiffﬂg’ff*"’ﬂ’
blocksize for file system I/O */ .

number of 512B blocks allocated */
time of last access */

time of last modification */

time of last status change */

/etc directory
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Figure 18-1: Relationship between i-node and directory structures for the file /etc/passwd



Hard vs Symbolic Links

* Hard link: a directory entry that references the I-Node for a child
file/directory

* Multiple hard links to the same I-Node are possible. Hence, the child I-Node
will keep a count of how many references are made to it

 When we “remove” a file/directory, the count is decremented. If the count
drops to zero, then the contents are actually removed from the file system

* Hard links cannot cross file systems

* Symbolic (or soft) link: symbolic representation of the path to a
file/directory
* When the symbolic link is accessed, the file system will follow this path
* Can cross file systems



i-node I-node table File data

number /home/erena directory
/ this 61
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Data block pointers
\ regular file
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Figure 18-2: Representation of hard and symbolic links



ext2 file system
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The Many File System Types

* Different OSes have made different decisions about file system
structure

* In addition: file system structure within Linux has evolved: ext2, ext3,
ext4

* We would like to be able to access any of these file systems from
within Linux

 Solution: Linux provides a layer of abstraction called the Virtual File
System (VFS)
* Provides a standard set of file/directory manipulation operations

 However, the user program level may need to take steps to deal with features
not supported by the underlying file system



Mount Points

* We would like to provide a file system abstraction that makes it
appear as though all of the storage resources live within one common
directory tree (starting from /)

* Linux solution: provide a way to virtually make a file system appear as
though it is a directory with the root directory



To the instance...

View mounted file systems:
df

View mounted file systems:

* /proc/mounts
e /etc/fstab



To the instance...

Create a new file system in a file:

dd if=/dev/zero of=~/myfile bs=512 count=4096
mkfs.ext3 ~/myfile

sudo mkdir /myfs

sudo mount ~fagg/myfile /myfs

Unmount the new file system:
sudo umount /myfs

* Note: not allowed if the fs is being accessed at that instant



Other Notes

* Be careful about mounting file systems from other people

* In particular, a useful mount option is “nosetuid”: this disables programs on
that file system from being executable as the admin

* Also the “noexec” option turns off execution of any file on the mounted file
system

* Mounts can also come from the network!



Organizing Data within a File: Application
Dependent

Pile

e Store records as data arrive

* Record structure may vary from one to the next |

» Records/fields should describe themselves in some way |

* Rapid storage: append to the end of the file Variable ength ecords

Variable set of fields
Chronological order

* Slow sequential access due to variable length records

(a) Pile File

* Slow access: must search through the file for the data of interest



Sequential File

 All records have the same structure (we know this
ahead of time)

e Records DO NOT have to be self-describing

 Key field: unique description of the record (e.g., a
record ID)

* Rapid storage: append to the end of the file
* Fast sequential access

* Slow random access: must search through the file for
the key of interest
* But easy to know where the records start in the file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b) Sequential File




Indexed Sequential File

Simple case:
* Index consists of <key, address> pairs

n

* Given key, quickly find address (or small range of Index
addresses) levels

* Main file: sequential file containing the records v

* Overflow file: quick storage of new records
* These records will be incorporated into the sequential file

| Main File

TTTT IIIIL

[

as time allows N
* Rapid storage: append to overflow File

 Fast sequential access

(c) Indexed Sequential File
e Fast random access

Extensions: can have multiple levels of indices



Indexed File

Goal: want to be able to search using different fields
of the records

* Multiple indices:
* Exhaustive: each record is represented
* Partial: not every record is represented

* General case: records can be of variable length
* But common to have fixed-length records

* Rapid storage: append to file
* Slow sequential access
* Fast random access

Exhaustive  Exhaustive Partial

1117\ 17\1117\

LS

Primary File
(variable-length records)

(d) Indexed File



Hashed File

* Fixed-length records
* Fixed-length file

* Some records may not contain information
e Use hash function from key to address
* Rapid storage: place at address (beware of collisions!)
* Slow sequential access
* Very fast random access
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Sequential Indexing with B-Trees



