CS 3113
File Systems

Data Storage Challenges

For any storage system, we have to answer questions such as:
e How will new data be stored? How do we select its location?

* When we want to retrieve data, how do we find this data and access
it?

What matters:

* Efficiency in storage and access
* Integrity

* Volume of data

* Ease of access, even when faced with many different physical
implementations

The Type of Application Matters

Different applications have different requirements for storage:
* Data collection: quickly storing data when it arrives in big bursts

* Databases: often highly-structured data
* Rapid look-up by key (or multiple keys)

* Many other apps: semi-structured

File Systems are About Abstraction

User Program

. Indexed
I T el e

Logical I/O

Basic I/O Supervisor

Basic File System

Network!

Disk Device Driver Tape Device Driver

Figure 12.1 File System Software Architecture

Master Directory

Directory Hierarchy

Subirectory Subirectory Subirectory

TR

Subirectory Subirectory File

PZANSN

File File File

CG and AHF: It

File/Directory Permissions
. Shell: 15 -1

 Nominal permissions: read (r), write (w), execute (x)
 x for a directory means that one can access the details of the directory

* Three different permission sets:
» User (owner) of the file/directory. A user ID is associated with object
* Group ownership of the file/directory. A group ID is also associated with the
object
e Other ownership (any user).

Disks

 Block-type device: data are read/written in fixed-sized groups of bytes
(blocks).

* Not uncommon to have blocks of 512, 1024 or 4096 bytes

Disks

Figure 14-1 shows the relationship between disk partitions and file systems, and
shows the parts of a (generic) file system.

Disk partition partition ‘ partition

File boot | super- | Fnode

system | block | block | table data blocks

Figure 14-1: Layout of disk partitions and a file system

Partition Layout

* Boot block: can contain the first information that a computer needs
to boot into an OS

* Superblock: data about the partition: size of the individual blocks, size
of the i-node table and size of the file system

* |-node table: one entry for each directory or file represented in the
file system

e Data blocks: data for files and directories

i-node

o I-node table File data
number (data blocks)
2 UID=root | GID=root
type=directory
PETM=IW-T-XI-X
‘oo / directory
Data block pointers -
tmp 5
/ etc 7
7 UID=root | GID=root

type=directory

PETIM=IW-I-XI-X

Data block pointers 1 —

/etc directory

282

group

passwd

6422

/

6422 | UlD=root | GID=root

type=file

perm=rw-r--I--

/etc/passwd file

[

Data block pointers —

File data
(login account
information)

Figure 18-1: Relationship between i-node and directory structures for the file /etc/passwd

struct stat {

dev_t
ino_t
mode_t
nlink t
uid_t
gid_t
dev_t
off t
blksize_t
blkent t
time_t
time_t
time_t

st_dev;
st_ino;
st_mode;
st _nlink;
st_uid;
st_gid;
st_rdev;
st_size;

st_blksize;

st_blocks;
st_atime;
st_mtime;
st_ctime;

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

i-node

I-node table File data

number
(data blocks)
2 UID=root | GID=root
type=directory

ID of device containing file */ .
inode number */ / dlreCtory
protection */ -
number of hard links */ =
user ID of owner */ tmp 2
group ID of owner */ s -
device ID (if special file) */ ete 7
total size, in bytes */ ’Fﬂiffﬂg’ff*"’ﬂ’
blocksize for file system I/O */ .

number of 512B blocks allocated */
time of last access */

time of last modification */

time of last status change */

/etc directory

282

group

passwd | 6422

6422 | UlD=root | GID=root

Data block pointers b
type=file

perm=rw-r--I--

/etc/passwd file

Data block pointers ,/'

File data
(login account
information)

Figure 18-1: Relationship between i-node and directory structures for the file /etc/passwd

Hard vs Symbolic Links

* Hard link: a directory entry that references the I-Node for a child
file/directory

* Multiple hard links to the same I-Node are possible. Hence, the child I-Node
will keep a count of how many references are made to it

 When we “remove” a file/directory, the count is decremented. If the count
drops to zero, then the contents are actually removed from the file system

* Hard links cannot cross file systems

* Symbolic (or soft) link: symbolic representation of the path to a
file/directory
* When the symbolic link is accessed, the file system will follow this path
* Can cross file systems

i-node I-node table File data

number /home/erena directory
/ this 61
61 | UlD=erena | GID=users \ Two hard
type=file /home/allyn directory links to the
perm=Iw-r--r-- / same file
link count = 2 | size=518 “hat 61
Data block pointers
\ regular file
file data
/home/kiran directory
A symbolic
309 | UlD=kiran | GID=users |™ |_other | 309 ' Iinlzrm
type=symlink
PCITN=IWXTWXIWX
link count =1 | size=16 data for soft link
. /home/kiran/other
f)ata block poinlcrs B — “/homc/crcna/
this”

Figure 18-2: Representation of hard and symbolic links

ext2 file system

i-node entry

Other file
information

Direct pointers
to file blocks

Y

f

Pointers to indirectly
addressed file blocks

s

rKeg,r

DB = Data block

IPB = Indirect pointer block
2IPB = Double IBP

31PB = Triple IPB
0 = DBO LNate: not all blocks are shoum)
1
2
3
4
5 = DB5
6
7
8
9 DB 11 DB 12
10 e
. IPB 3— DB 13
DB
12 :/
__» IPB [
13 = 2IPB B
~rs F
14 DB
\ = 1PB [
3IPB py— { ~[pp
IPB
2IPB [

Figure 14-2: Structure of file blocks for a file in an ext2 file system

The Many File System Types

* Different OSes have made different decisions about file system
structure

* In addition: file system structure within Linux has evolved: ext2, ext3,
ext4

* We would like to be able to access any of these file systems from
within Linux

 Solution: Linux provides a layer of abstraction called the Virtual File
System (VFS)
* Provides a standard set of file/directory manipulation operations

 However, the user program level may need to take steps to deal with features
not supported by the underlying file system

Mount Points

* We would like to provide a file system abstraction that makes it
appear as though all of the storage resources live within one common
directory tree (starting from /)

* Linux solution: provide a way to virtually make a file system appear as
though it is a directory with the root directory

To the instance...

View mounted file systems:
df

View mounted file systems:

* /proc/mounts
e /etc/fstab

To the instance...

Create a new file system in a file:

dd if=/dev/zero of=~/myfile bs=512 count=4096
mkfs.ext3 ~/myfile

sudo mkdir /myfs

sudo mount ~fagg/myfile /myfs

Unmount the new file system:
sudo umount /myfs

* Note: not allowed if the fs is being accessed at that instant

Other Notes

* Be careful about mounting file systems from other people

* In particular, a useful mount option is “nosetuid”: this disables programs on
that file system from being executable as the admin

* Also the “noexec” option turns off execution of any file on the mounted file
system

* Mounts can also come from the network!

Organizing Data within a File: Application
Dependent

Pile

e Store records as data arrive

* Record structure may vary from one to the next |

» Records/fields should describe themselves in some way |

* Rapid storage: append to the end of the file Variable ength ecords

Variable set of fields
Chronological order

* Slow sequential access due to variable length records

(a) Pile File

* Slow access: must search through the file for the data of interest

Sequential File

 All records have the same structure (we know this
ahead of time)

e Records DO NOT have to be self-describing

 Key field: unique description of the record (e.g., a
record ID)

* Rapid storage: append to the end of the file
* Fast sequential access

* Slow random access: must search through the file for
the key of interest
* But easy to know where the records start in the file

Fixed-length records
Fixed set of fields in fixed order
Sequential order based on key field

(b) Sequential File

Indexed Sequential File

Simple case:
* Index consists of <key, address> pairs

n

* Given key, quickly find address (or small range of Index
addresses) levels

* Main file: sequential file containing the records v

* Overflow file: quick storage of new records
* These records will be incorporated into the sequential file

| Main File

TTTT IIIIL

[

as time allows N
* Rapid storage: append to overflow File

 Fast sequential access

(c) Indexed Sequential File
e Fast random access

Extensions: can have multiple levels of indices

Indexed File

Goal: want to be able to search using different fields
of the records

* Multiple indices:
* Exhaustive: each record is represented
* Partial: not every record is represented

* General case: records can be of variable length
* But common to have fixed-length records

* Rapid storage: append to file
* Slow sequential access
* Fast random access

Exhaustive Exhaustive Partial

1117\ 17\1117\

LS

Primary File
(variable-length records)

(d) Indexed File

Hashed File

* Fixed-length records
* Fixed-length file

* Some records may not contain information
e Use hash function from key to address
* Rapid storage: place at address (beware of collisions!)
* Slow sequential access
* Very fast random access

CG and AHF: Introduction to Operating Systems

Sequential Indexing with B-Trees

