
Chapter 7

Memory

Management
Eighth Edition

William Stallings

Operating

Systems:

Internals

and Design

Principles

Uni-Processing to
Multi-Processing

Taking the step into multi-processing adds many challenges

 Sharing available resources across processes:

 How to efficiently use the available resources?

 How to allocate resources on the fly?

 How to avoid deadlock and starvation?

 How to keep processes from interfering with one-another?

 I/O activities

 CPU resources

 Memory

Multi-Processing and
Memory Management

Efficient allocation of memory to processes

OS/Hardware support for quick access to

memory resources

Memory Management
Terminology

Frame:

Page:

Segment:

Memory Management
Terminology

Frame: a fixed-length block in main memory

Page: a fixed-length block stored in

secondary memory

Segment: a non-fixed length block of

memory

Memory Management
Issues to be Addressed

 Relocation

 Protection

 Sharing

 Logical organization

 Physical organization

Relocation

 Want to support many processes in main memory at once

 This set may change over very short periods of time

 No way to guarantee that a process will be placed in the

same region of physical memory from one instant to the

next

 Relocation: OS and hardware work together to support

placing a process at any location in main memory

 Challenge: how to make this invisible to the process?

Process Control Block

Program

Data

Stack

Current top

of stack

Entry point

to program

Process control

information

Increasing

address

values

Branch

instruction

Reference

to data

Figure 7.1 Addressing Requirements for a Process

Protection

The relocation and protection mechanisms work

together and require hardware support

 Processes need to have permission to reference

memory locations for reading or writing purposes

 Memory references generated by a process must be

checked for safety at run time

Sharing

 Advantageous to allow each process access to a single copy

of the program rather than for each to have their own

separate copy

 Memory management must allow controlled access to

shared areas of memory without compromising protection

 Mechanisms used to support relocation must also support

sharing capabilities

Logical Organization

 Physical memory is organized as linear. We would like to

preserve this abstraction at the program level

 But: programs are generally partitioned into modules

 Example: a source file produces a single code module that

can be compiled independently of the other source files

 Would like to preserve this notion of modules:

 Different modules will have different lengths

 Protection and sharing can be done at a module level

 We refer to this as segmentation

Physical Organization

 Multi-layer organization to memory:

 Primary memory is fast, but expensive

 Secondary memories are slower, but less

expensive

 Memory management is the process of allocating

processes to primary and secondary memory

 This must be coordinated with the process scheduler

Physical Organization

When main memory is too small to fit a program:

 User managed (overlays):

 Program is split into multiple pieces, only one of which is

in memory at once

 Program triggers the copying of the next piece from

secondary memory into main memory when it is needed

 In modern OSes, we do not trust a program to do this

level of memory management

 System managed: virtual memory (next lecture)

Memory Partitioning

Memory Partitioning:

 Our first attempt in early OSes

 A process is brought into main memory as a

monolithic unit

 Many different techniques for implementation

Fixed Partitioning

 Physical memory is permanently cut fixed-sized

partitions

 Processes are allocated to free partitions when they

are ready to execute

Operating System

8M

Operating System

8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

Operating

System

New

Processes

New

Processes

Operating

System

Figure 7.3 Memory Assignment for Fixed Partitioning

(a) One process queue per partition (b) Single queue

 A program may be too big to fit in a partition

 Program must drop back to using overlays

 Main memory utilization is inefficient

 Any program, regardless of size, occupies an

entire partition

 Internal fragmentation: wasted space due to

the block of data loaded being smaller than

the partition

 The number of partitions specified at system

generation time

 Limits the number of active processes in the

system

 Small jobs will not utilize partition space

efficiently

 And there are typically many of these

processes

Partitions are of variable length and

number

Process is allocated exactly as much

memory as it requires

This technique was used by IBM’s

mainframe operating system, OS/MVT

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

Dynamic Partitioning:
Challenges

• Memory becomes more and more fragmented

• As a result, memory utilization declines

External Fragmentation

• OS shifts processes so that the group is contiguous

• Free memory is together in one block

• But: time consuming and wastes CPU time

A Fix: Compaction

Dynamic Allocation:
Placement Algorithms

Best-fit

• Chooses the
block that is
closest in size
to the request

First-fit

• Begins to scan
memory from
the beginning
and chooses
the first
available
block that is
large enough

Next-fit

• Begins to scan
memory from
the location
of the last
placement
and chooses
the next
available
block that is
large enough

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last

allocated

block (14M)

8M

12M

6M

2M

8M

6M

14M

20 M

(b) After

Next Fit

Allocated block

Best Fit

First Fit

Figure 7.5 Example Memory Configuration before

and after Allocation of 16-Mbyte Block

Free block

Possible new allocation

Dynamic Allocation:
Placement Algorithms

 In practice: First Fit tends to perform best

 But: all methods involve a lot of overhead to

compute where to place a process

 And: we have the overhead of compaction

Moving Beyond Simple Allocation

Schemes: The Buddy System

 A synthesis of the fixed and dynamic

partitioning schemes

 Space available for allocation is initially treated

as a single, large block

 Memory blocks are available of size 2K words,

L ≤ K ≤ U, where

 2L = smallest size block that is allocated

 2U = largest size block that is allocated; generally 2U is

the size of the entire memory available for allocation

Buddy System Algorithm

 New process allocation:

 Find the smallest available block that fits the new
process

 Cut this block by factors of 2 until it just fits the
process, leaving other parts as available for other
processes (these pairs are the buddies)

 Deallocation:

 If the deallocated block has an unallocated buddy,
then merge back together

 Repeat recursively

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

256K 256KD =256 KA = 128K C =64 K 64K

Figure 7.7 Tree Representation of Buddy System

1M

512K

256K

128K

64K

Leaf node for

allocated block

Leaf node for

unallocated block

Non-leaf node

Addresses

• Reference to a memory location independent of the current
assignment of data to memory

Logical

• Address is expressed as a location relative to some known
point

Relative (one type of Logical)

• Actual location in main memory

Physical or Absolute

Process Control Block

Program

Data

Stack

Figure 7.8 Hardware Support for Relocation

Comparator

Interrupt to

operating system

Absolute

address

Process image in

main memory

Relative address

Base Register

Bounds Register

Adder

Beyond Partitioning:
Paging

 Partition memory into equal fixed-size chunks that

are relatively small

 Process is also divided into small fixed-size chunks

of the same size

Pages

• Chunks of a
process

Frames

• Available
chunks of
memory

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

Page Table

Used by processor to produce a physical

address from a logical one

Contains the frame location for each page in

the process

Maintained by the operating system for each

process

00
11
22
33

Process A

page table

—0
—1
—2

Process B

page table

70
81
92
103

Process C

page table

40
51
62
113
124

Process D

page table

13
14

Free frame

list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

Segmentation

A program can be subdivided into segments

May be of different lengths

But, there is a maximum length

Addressing consists of two parts:

 segment number

an offset

Similar to dynamic partitioning

Eliminates internal fragmentation

Segmentation

 Usually visible to the programmer

 Typically, the programmer will assign programs and

data to different segments

 Modular programming: the program or data may be

further broken down into multiple segments

 But: the programmer must be aware of the

maximum segment size limitation

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

Summary: Segmentation

 Eliminates internal fragmentation

 But: computation of addresses is more involved

0000010111011110

(a) Partitioning

Relative address = 1502

U
se

r
p

ro
c
es

s

(2
7

0
0
 b

y
te

s)

0000010111011110

(b) Paging

(page size = 1K)

Logical address =

Page# = 1, Offset = 478

Logical address =

Segment# = 1, Offset = 752

P
a
g

e
0

P
a

g
e

1
P

a
g

e
2

In
te

rn
a
l

fr
a

g
m

en
ta

ti
o
n

0001001011110000

(c) Segmentation

S
eg

m
en

t
0

7
5

0
 b

y
te

s

S
eg

m
en

t
1

1
9

5
0
 b

y
te

s

4
7

8 7
5

2

Figure 7.11 Logical Addresses

Summary

 Memory
partitioning

 fixed partitioning

 dynamic
partitioning

 buddy system

 relocation

 Segmentation

 Memory management
issues

 relocation

 protection

 sharing

 logical
organization

 physical
organization

 Paging

