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Uni-Processing to 
Multi-Processing

Taking the step into multi-processing adds many challenges

 Sharing available resources across processes:

 How to efficiently use the available resources?

 How to allocate resources on the fly?

 How to avoid deadlock and starvation?

 How to keep processes from interfering with one-another?

 I/O activities

 CPU resources

 Memory



Multi-Processing and 
Memory Management

Efficient allocation of  memory to processes

OS/Hardware support for quick access to 

memory resources



Memory Management 
Terminology

Frame:

Page:

Segment:



Memory Management 
Terminology

Frame: a fixed-length block in main memory

Page: a fixed-length block stored in 

secondary memory 

Segment: a non-fixed length block of  

memory



Memory Management 
Issues to be Addressed

 Relocation

 Protection

 Sharing

 Logical organization

 Physical organization



Relocation

 Want to support many processes in main memory at once

 This set may change over very short  periods of  time

 No way to guarantee that a process will be placed in the 

same region of  physical memory from one instant to the 

next

 Relocation: OS and hardware work together to support 

placing a process at any location in main memory

 Challenge: how to make this invisible to the process?
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Protection

The relocation and protection mechanisms work 

together and require hardware support

 Processes need to have permission to reference 

memory locations for reading or writing purposes

 Memory references generated by a process must be 

checked for safety at run time



Sharing

 Advantageous to allow each process access to a single copy 

of  the program rather than for each to have their own 

separate copy

 Memory management must allow controlled access to 

shared areas of  memory without compromising protection

 Mechanisms used to support relocation must also support 

sharing capabilities



Logical Organization

 Physical memory is organized as linear.  We would like to 

preserve this abstraction at the program level

 But: programs are generally partitioned into modules

 Example: a source file produces a single code module that 

can be compiled independently of  the other source files

 Would like to preserve this notion of  modules:

 Different modules will have different lengths

 Protection and sharing can be done at a module level

 We refer to this as segmentation



Physical Organization

 Multi-layer organization to memory: 

 Primary memory is fast, but expensive

 Secondary memories are slower, but less 

expensive

 Memory management is the process of  allocating 

processes to primary and secondary memory

 This must be coordinated with the process scheduler



Physical Organization

When main memory is too small to fit a program:

 User managed (overlays): 

 Program is split into multiple pieces, only one of  which is 

in memory at once

 Program triggers the copying of  the next piece from 

secondary memory into main memory when it is needed

 In modern OSes, we do not trust a program to do this 

level of  memory management

 System managed: virtual memory (next lecture)



Memory Partitioning

Memory Partitioning:

 Our first attempt in early OSes 

 A process is brought into main memory as a 

monolithic unit

 Many different techniques for implementation



Fixed Partitioning

 Physical memory is permanently cut fixed-sized 

partitions

 Processes are allocated to free partitions when they 

are ready to execute
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 A program may be too big to fit in a partition 

 Program must drop back to using overlays

 Main memory utilization is inefficient  

 Any program, regardless of  size, occupies an 

entire partition

 Internal fragmentation: wasted space due to 

the block of  data loaded being smaller than 

the partition



 The number of  partitions specified at system 

generation time

 Limits the number of  active processes in the 

system

 Small jobs will not utilize partition space 

efficiently

 And there are typically many of  these 

processes



Partitions are of  variable length and 

number

Process is allocated exactly as much 

memory as it requires

This technique was used by IBM’s 

mainframe operating system, OS/MVT
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Dynamic Partitioning: 
Challenges

• Memory becomes more and more fragmented

• As a result, memory utilization declines

External Fragmentation

• OS shifts processes so that the group is contiguous

• Free memory is together in one block

• But: time consuming and wastes CPU time

A Fix: Compaction



Dynamic Allocation: 
Placement Algorithms

Best-fit

• Chooses the 
block that is 
closest in size 
to the request

First-fit

• Begins to scan 
memory from 
the beginning 
and chooses 
the first 
available 
block that is 
large enough 

Next-fit

• Begins to scan 
memory from 
the location 
of  the last 
placement 
and chooses 
the next 
available 
block that is 
large enough
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Dynamic Allocation: 
Placement Algorithms

 In practice: First Fit tends to perform best

 But: all methods involve a lot of  overhead to 

compute where to place a process

 And: we have the overhead of  compaction



Moving Beyond Simple Allocation 

Schemes: The Buddy System

 A synthesis of  the fixed and dynamic 

partitioning schemes

 Space available for allocation is initially treated 

as a single, large block

 Memory blocks are available of  size 2K words, 

L ≤ K ≤ U, where 

 2L = smallest size block that is allocated 

 2U = largest size block that is allocated; generally 2U is 

the size of  the entire memory available for allocation



Buddy System Algorithm

 New process allocation:

 Find the smallest available block that fits the new 
process

 Cut this block by factors of  2 until it just fits the 
process, leaving other parts as available for other 
processes (these pairs are the buddies)

 Deallocation: 

 If  the deallocated block has an unallocated buddy, 
then merge back together

 Repeat recursively
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Addresses

• Reference to a memory location independent of  the current 
assignment of  data to memory

Logical

• Address is expressed as a location relative to some known 
point

Relative (one type of Logical)

• Actual location in main memory

Physical or Absolute



Process Control Block
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Beyond Partitioning: 
Paging

 Partition memory into equal fixed-size chunks that 

are relatively small

 Process is also divided into small fixed-size chunks 

of  the same size

Pages

• Chunks of  a 
process

Frames

• Available 
chunks of  
memory
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Page Table

Used by processor to produce a physical 

address from a logical one

Contains the frame location for each page in 

the process

Maintained by the operating system for each 

process
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Figure 7.10  Data Structures for the Example of Figure 7.9 at Time Epoch (f)
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Segmentation

A program can be subdivided into segments

May be of  different lengths

But, there is a maximum length

Addressing consists of  two parts:

 segment number 

an offset

Similar to dynamic partitioning

Eliminates internal fragmentation



Segmentation

 Usually visible to the programmer

 Typically, the programmer will assign programs and 

data to different segments

 Modular programming: the program or data may be 

further broken down into multiple segments

 But: the programmer must be aware of  the 

maximum segment size limitation
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Summary: Segmentation

 Eliminates internal fragmentation

 But: computation of  addresses is more involved
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Summary

 Memory 
partitioning

 fixed partitioning

 dynamic 
partitioning

 buddy system

 relocation

 Segmentation 

 Memory management 
issues

 relocation

 protection

 sharing

 logical 
organization

 physical 
organization

 Paging 


