
Chapter 7

Memory

Management
Eighth Edition

William Stallings

Operating

Systems:

Internals

and Design

Principles

Uni-Processing to
Multi-Processing

Taking the step into multi-processing adds many challenges

 Sharing available resources across processes:

 How to efficiently use the available resources?

 How to allocate resources on the fly?

 How to avoid deadlock and starvation?

 How to keep processes from interfering with one-another?

 I/O activities

 CPU resources

 Memory

Multi-Processing and
Memory Management

Efficient allocation of memory to processes

OS/Hardware support for quick access to

memory resources

Memory Management
Terminology

Frame:

Page:

Segment:

Memory Management
Terminology

Frame: a fixed-length block in main memory

Page: a fixed-length block stored in

secondary memory

Segment: a non-fixed length block of

memory

Memory Management
Issues to be Addressed

 Relocation

 Protection

 Sharing

 Logical organization

 Physical organization

Relocation

 Want to support many processes in main memory at once

 This set may change over very short periods of time

 No way to guarantee that a process will be placed in the

same region of physical memory from one instant to the

next

 Relocation: OS and hardware work together to support

placing a process at any location in main memory

 Challenge: how to make this invisible to the process?

Process Control Block

Program

Data

Stack

Current top

of stack

Entry point

to program

Process control

information

Increasing

address

values

Branch

instruction

Reference

to data

Figure 7.1 Addressing Requirements for a Process

Protection

The relocation and protection mechanisms work

together and require hardware support

 Processes need to have permission to reference

memory locations for reading or writing purposes

 Memory references generated by a process must be

checked for safety at run time

Sharing

 Advantageous to allow each process access to a single copy

of the program rather than for each to have their own

separate copy

 Memory management must allow controlled access to

shared areas of memory without compromising protection

 Mechanisms used to support relocation must also support

sharing capabilities

Logical Organization

 Physical memory is organized as linear. We would like to

preserve this abstraction at the program level

 But: programs are generally partitioned into modules

 Example: a source file produces a single code module that

can be compiled independently of the other source files

 Would like to preserve this notion of modules:

 Different modules will have different lengths

 Protection and sharing can be done at a module level

 We refer to this as segmentation

Physical Organization

 Multi-layer organization to memory:

 Primary memory is fast, but expensive

 Secondary memories are slower, but less

expensive

 Memory management is the process of allocating

processes to primary and secondary memory

 This must be coordinated with the process scheduler

Physical Organization

When main memory is too small to fit a program:

 User managed (overlays):

 Program is split into multiple pieces, only one of which is

in memory at once

 Program triggers the copying of the next piece from

secondary memory into main memory when it is needed

 In modern OSes, we do not trust a program to do this

level of memory management

 System managed: virtual memory (next lecture)

Memory Partitioning

Memory Partitioning:

 Our first attempt in early OSes

 A process is brought into main memory as a

monolithic unit

 Many different techniques for implementation

Fixed Partitioning

 Physical memory is permanently cut fixed-sized

partitions

 Processes are allocated to free partitions when they

are ready to execute

Operating System

8M

Operating System

8M

8M

2M

4M

6M

8M

8M

12M

16M

8M

8M

8M

8M

8M

8M

(a) Equal-size partitions (b) Unequal-size partitions

Figure 7.2 Example of Fixed Partitioning of a 64-Mbyte Memory

Operating

System

New

Processes

New

Processes

Operating

System

Figure 7.3 Memory Assignment for Fixed Partitioning

(a) One process queue per partition (b) Single queue

 A program may be too big to fit in a partition

 Program must drop back to using overlays

 Main memory utilization is inefficient

 Any program, regardless of size, occupies an

entire partition

 Internal fragmentation: wasted space due to

the block of data loaded being smaller than

the partition

 The number of partitions specified at system

generation time

 Limits the number of active processes in the

system

 Small jobs will not utilize partition space

efficiently

 And there are typically many of these

processes

Partitions are of variable length and

number

Process is allocated exactly as much

memory as it requires

This technique was used by IBM’s

mainframe operating system, OS/MVT

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

(a)

Operating

System
8M

20M

36M

56M

(b)

Operating

System

Process 1 20M

14M

22M

(c)

Operating

System

Process 1

Process 2

20M

14M

18M

4M

(d)

Operating

System

Process 1

Process 2

14MProcess 2

Process 3

20M

14M

18M

4M

(e)

Operating

System

Process 1

Process 3

20M

8M

6M

18M

4M

(f)

Operating

System

Process 1

Process 4

Process 3

20M

8M

6M

18M

4M

(g)

Operating

System

Process 4

Process 3

8M

6M

6M

18M

4M

(h)

Operating

System

Process 4

Process 3

Figure 7.4 The Effect of Dynamic Partitioning

Dynamic Partitioning:
Challenges

• Memory becomes more and more fragmented

• As a result, memory utilization declines

External Fragmentation

• OS shifts processes so that the group is contiguous

• Free memory is together in one block

• But: time consuming and wastes CPU time

A Fix: Compaction

Dynamic Allocation:
Placement Algorithms

Best-fit

• Chooses the
block that is
closest in size
to the request

First-fit

• Begins to scan
memory from
the beginning
and chooses
the first
available
block that is
large enough

Next-fit

• Begins to scan
memory from
the location
of the last
placement
and chooses
the next
available
block that is
large enough

8M

12M

22M

18M

8M

6M

14M

36M

(a) Before

Last

allocated

block (14M)

8M

12M

6M

2M

8M

6M

14M

20 M

(b) After

Next Fit

Allocated block

Best Fit

First Fit

Figure 7.5 Example Memory Configuration before

and after Allocation of 16-Mbyte Block

Free block

Possible new allocation

Dynamic Allocation:
Placement Algorithms

 In practice: First Fit tends to perform best

 But: all methods involve a lot of overhead to

compute where to place a process

 And: we have the overhead of compaction

Moving Beyond Simple Allocation

Schemes: The Buddy System

 A synthesis of the fixed and dynamic

partitioning schemes

 Space available for allocation is initially treated

as a single, large block

 Memory blocks are available of size 2K words,

L ≤ K ≤ U, where

 2L = smallest size block that is allocated

 2U = largest size block that is allocated; generally 2U is

the size of the entire memory available for allocation

Buddy System Algorithm

 New process allocation:

 Find the smallest available block that fits the new
process

 Cut this block by factors of 2 until it just fits the
process, leaving other parts as available for other
processes (these pairs are the buddies)

 Deallocation:

 If the deallocated block has an unallocated buddy,
then merge back together

 Repeat recursively

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

1 Mbyte block 1 M

1M

512K256KRequest 100 K

Request 240 K

Request 64 K

Request 256 K

Release B

Release A

Request 75 K

Release C

Release E

Release D

256K

A = 128K 128K

512KB = 256KA = 128K 128K

512KB = 256KA = 128K C = 64K 64K

256KB = 256K D = 256KA = 128K C = 64K 64K

256KD = 256KA = 128K C = 64K 64K

256K 256KD = 256KE = 128K C = 64K 64K

256K 256KD = 256KE = 128K 128K

512K 256KD = 256K

256K 256KD = 256K128K C = 64K 64K

Figure 7.6 Example of Buddy System

256K 256KD =256 KA = 128K C =64 K 64K

Figure 7.7 Tree Representation of Buddy System

1M

512K

256K

128K

64K

Leaf node for

allocated block

Leaf node for

unallocated block

Non-leaf node

Addresses

• Reference to a memory location independent of the current
assignment of data to memory

Logical

• Address is expressed as a location relative to some known
point

Relative (one type of Logical)

• Actual location in main memory

Physical or Absolute

Process Control Block

Program

Data

Stack

Figure 7.8 Hardware Support for Relocation

Comparator

Interrupt to

operating system

Absolute

address

Process image in

main memory

Relative address

Base Register

Bounds Register

Adder

Beyond Partitioning:
Paging

 Partition memory into equal fixed-size chunks that

are relatively small

 Process is also divided into small fixed-size chunks

of the same size

Pages

• Chunks of a
process

Frames

• Available
chunks of
memory

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

0

Main memoryFrame

number

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(a) Fifteen Available Frames

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) Load Process A

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(c) Load Process B

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(d) Load Process C

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(f) Load Process D

A.1

A.2

A.3

0

Main memory

A.0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(e) Swap out B

A.1

A.2

A.3

Figure 7.9 Assignment of Process Pages to Free Frames

C.0

C.1

C.2

C.3

C.1

C.2

C.3

C.1

C.2

C.3

C.0 C.0

D.0

D.1

D.2

B.0

B.1

B.2

D.3

D.4

B.0

B.1

B.2

Page Table

Used by processor to produce a physical

address from a logical one

Contains the frame location for each page in

the process

Maintained by the operating system for each

process

00
11
22
33

Process A

page table

—0
—1
—2

Process B

page table

70
81
92
103

Process C

page table

40
51
62
113
124

Process D

page table

13
14

Free frame

list

Figure 7.10 Data Structures for the Example of Figure 7.9 at Time Epoch (f)

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

Segmentation

A program can be subdivided into segments

May be of different lengths

But, there is a maximum length

Addressing consists of two parts:

 segment number

an offset

Similar to dynamic partitioning

Eliminates internal fragmentation

Segmentation

 Usually visible to the programmer

 Typically, the programmer will assign programs and

data to different segments

 Modular programming: the program or data may be

further broken down into multiple segments

 But: the programmer must be aware of the

maximum segment size limitation

0

0

1
2

0 0 0 0 1 0 1 1 1 0 1 1 1 1 0

6-bit page # 10-bit offset

Process

page table

16-bit logical address

0 0 0 1 1 0 0 1 1 1 0 1 1 1 1 0

16-bit physical address

(a) Paging

000101
000110

011001

0 0 0 1 0 0 1 0 1 1 1 1 0 0 0 0

4-bit segment # 12-bit offset

Process segment table

Length Base

16-bit logical address

0 0 1 0 0 0 1 1 0 0 0 1 0 0 0 0

16-bit physical address

(b) Segmentation

0010111011100

1

0000010000000000
011110011110 0010000000100000 +

Figure 7.12 Examples of Logical-to-Physical Address Translation

Summary: Segmentation

 Eliminates internal fragmentation

 But: computation of addresses is more involved

0000010111011110

(a) Partitioning

Relative address = 1502

U
se

r
p

ro
c
es

s

(2
7

0
0
 b

y
te

s)

0000010111011110

(b) Paging

(page size = 1K)

Logical address =

Page# = 1, Offset = 478

Logical address =

Segment# = 1, Offset = 752

P
a
g

e
0

P
a

g
e

1
P

a
g

e
2

In
te

rn
a
l

fr
a

g
m

en
ta

ti
o
n

0001001011110000

(c) Segmentation

S
eg

m
en

t
0

7
5

0
 b

y
te

s

S
eg

m
en

t
1

1
9

5
0
 b

y
te

s

4
7

8 7
5

2

Figure 7.11 Logical Addresses

Summary

 Memory
partitioning

 fixed partitioning

 dynamic
partitioning

 buddy system

 relocation

 Segmentation

 Memory management
issues

 relocation

 protection

 sharing

 logical
organization

 physical
organization

 Paging

