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Uni-Processing to 
Multi-Processing

Taking the step into multi-processing adds many challenges

 Sharing available resources across processes:

 How to efficiently use the available resources?

 How to allocate resources on the fly?

 How to avoid deadlock and starvation?

 How to keep processes from interfering with one-another?

 I/O activities

 CPU resources

 Memory



Multi-Processing and 
Memory Management

Efficient allocation of  memory to processes

OS/Hardware support for quick access to 

memory resources



Memory Management 
Terminology

Frame:

Page:

Segment:



Memory Management 
Terminology

Frame: a fixed-length block in main memory

Page: a fixed-length block stored in 

secondary memory 

Segment: a non-fixed length block of  

memory



Memory Management 
Issues to be Addressed

 Relocation

 Protection

 Sharing

 Logical organization

 Physical organization



Relocation

 Want to support many processes in main memory at once

 This set may change over very short  periods of  time

 No way to guarantee that a process will be placed in the 

same region of  physical memory from one instant to the 

next

 Relocation: OS and hardware work together to support 

placing a process at any location in main memory

 Challenge: how to make this invisible to the process?
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Protection

The relocation and protection mechanisms work 

together and require hardware support

 Processes need to have permission to reference 

memory locations for reading or writing purposes

 Memory references generated by a process must be 

checked for safety at run time



Sharing

 Advantageous to allow each process access to a single copy 

of  the program rather than for each to have their own 

separate copy

 Memory management must allow controlled access to 

shared areas of  memory without compromising protection

 Mechanisms used to support relocation must also support 

sharing capabilities



Logical Organization

 Physical memory is organized as linear.  We would like to 

preserve this abstraction at the program level

 But: programs are generally partitioned into modules

 Example: a source file produces a single code module that 

can be compiled independently of  the other source files

 Would like to preserve this notion of  modules:

 Different modules will have different lengths

 Protection and sharing can be done at a module level

 We refer to this as segmentation



Physical Organization

 Multi-layer organization to memory: 

 Primary memory is fast, but expensive

 Secondary memories are slower, but less 

expensive

 Memory management is the process of  allocating 

processes to primary and secondary memory

 This must be coordinated with the process scheduler



Physical Organization

When main memory is too small to fit a program:

 User managed (overlays): 

 Program is split into multiple pieces, only one of  which is 

in memory at once

 Program triggers the copying of  the next piece from 

secondary memory into main memory when it is needed

 In modern OSes, we do not trust a program to do this 

level of  memory management

 System managed: virtual memory (next lecture)



Memory Partitioning

Memory Partitioning:

 Our first attempt in early OSes 

 A process is brought into main memory as a 

monolithic unit

 Many different techniques for implementation



Fixed Partitioning

 Physical memory is permanently cut fixed-sized 

partitions

 Processes are allocated to free partitions when they 

are ready to execute
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 A program may be too big to fit in a partition 

 Program must drop back to using overlays

 Main memory utilization is inefficient  

 Any program, regardless of  size, occupies an 

entire partition

 Internal fragmentation: wasted space due to 

the block of  data loaded being smaller than 

the partition



 The number of  partitions specified at system 

generation time

 Limits the number of  active processes in the 

system

 Small jobs will not utilize partition space 

efficiently

 And there are typically many of  these 

processes



Partitions are of  variable length and 

number

Process is allocated exactly as much 

memory as it requires

This technique was used by IBM’s 

mainframe operating system, OS/MVT
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Dynamic Partitioning: 
Challenges

• Memory becomes more and more fragmented

• As a result, memory utilization declines

External Fragmentation

• OS shifts processes so that the group is contiguous

• Free memory is together in one block

• But: time consuming and wastes CPU time

A Fix: Compaction



Dynamic Allocation: 
Placement Algorithms

Best-fit

• Chooses the 
block that is 
closest in size 
to the request

First-fit

• Begins to scan 
memory from 
the beginning 
and chooses 
the first 
available 
block that is 
large enough 

Next-fit

• Begins to scan 
memory from 
the location 
of  the last 
placement 
and chooses 
the next 
available 
block that is 
large enough
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Dynamic Allocation: 
Placement Algorithms

 In practice: First Fit tends to perform best

 But: all methods involve a lot of  overhead to 

compute where to place a process

 And: we have the overhead of  compaction



Moving Beyond Simple Allocation 

Schemes: The Buddy System

 A synthesis of  the fixed and dynamic 

partitioning schemes

 Space available for allocation is initially treated 

as a single, large block

 Memory blocks are available of  size 2K words, 

L ≤ K ≤ U, where 

 2L = smallest size block that is allocated 

 2U = largest size block that is allocated; generally 2U is 

the size of  the entire memory available for allocation



Buddy System Algorithm

 New process allocation:

 Find the smallest available block that fits the new 
process

 Cut this block by factors of  2 until it just fits the 
process, leaving other parts as available for other 
processes (these pairs are the buddies)

 Deallocation: 

 If  the deallocated block has an unallocated buddy, 
then merge back together

 Repeat recursively
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Addresses

• Reference to a memory location independent of  the current 
assignment of  data to memory

Logical

• Address is expressed as a location relative to some known 
point

Relative (one type of Logical)

• Actual location in main memory

Physical or Absolute
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Beyond Partitioning: 
Paging

 Partition memory into equal fixed-size chunks that 

are relatively small

 Process is also divided into small fixed-size chunks 

of  the same size

Pages

• Chunks of  a 
process

Frames

• Available 
chunks of  
memory
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Page Table

Used by processor to produce a physical 

address from a logical one

Contains the frame location for each page in 

the process

Maintained by the operating system for each 

process
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Figure 7.10  Data Structures for the Example of Figure 7.9 at Time Epoch (f)
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Segmentation

A program can be subdivided into segments

May be of  different lengths

But, there is a maximum length

Addressing consists of  two parts:

 segment number 

an offset

Similar to dynamic partitioning

Eliminates internal fragmentation



Segmentation

 Usually visible to the programmer

 Typically, the programmer will assign programs and 

data to different segments

 Modular programming: the program or data may be 

further broken down into multiple segments

 But: the programmer must be aware of  the 

maximum segment size limitation
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Summary: Segmentation

 Eliminates internal fragmentation

 But: computation of  addresses is more involved
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Summary

 Memory 
partitioning

 fixed partitioning

 dynamic 
partitioning

 buddy system

 relocation

 Segmentation 

 Memory management 
issues

 relocation

 protection

 sharing

 logical 
organization

 physical 
organization

 Paging 


