
Chapter 2
Operating System 

Overview
Ninth Edition

By William Stallings

Operating 
Systems:
Internals 

and Design 
Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Operating System

n A program that controls the execution of  
application programs

n An interface between applications and hardware

Main objectives of  an OS:

• Convenience
• Efficiency
• Ability to evolve

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



I/O devices
and

networking

System interconnect
(bus)

Software

Application
programming interface

Instruction Set
Architecture

Hardware

Main
memory

Memory
translation

Execution hardware

Figure 2.1  Computer Hardware and Software Structure

Application programs

Application
binary interface

Operating system

Libraries/utilities

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Operating System Services

n Program development
n Program execution
n Access I/O devices
n Controlled access to files
n System access
n Error detection and response
n Accounting

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Key Interfaces

n Instruction set architecture (ISA)

nApplication binary interface (ABI)

nApplication programming interface (API)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



The Operating System as 
Resource Manager

nThe OS is responsible for controlling 
the use of  a computer’s resources, 
such as I/O, main and secondary 
memory, and processor execution 
time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Operating System 
as Resource Manager

nFunctions in the same way as ordinary 
computer software

nProgram, or suite of  programs, executed 
by the processor

nFrequently relinquishes control and must 
depend on the processor to allow it to 
regain control

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Memory

Computer System
I/O Devices

Operating
System

Software

Programs
and Data

Processor Processor

OS
Programs

Data

Storage

I/O Controller

I/O Controller

Printers,
keyboards,
digital camera,
etc.

I/O Controller

Figure 2.2   The Operating System as Resource Manager
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Evolution of Operating Systems

§ A major OS will evolve over time for a 
number of  reasons:

Hardware upgrades

New types of hardware

New services

Fixes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Evolution of  
Operating Systems

§ Stages include:

Serial 
Processing

Simple Batch 
Systems

Multiprogrammed 
Batch Systems

Time 
Sharing 
Systems

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Serial Processing
Earliest Computers:

n No operating system

n Programmers interacted 
directly with the computer 
hardware

n Computers ran from a console 
with display lights, toggle 
switches, some form of  input 
device, and a printer

n Users have access to the 
computer in “series”

Problems:
n Scheduling:

n Most installations used a 
hardcopy sign-up sheet to 
reserve computer time

n Time allocations could 
run short or long, 
resulting in wasted 
computer time

n Setup time

n A considerable amount of  
time was spent on setting up 
the program to run

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

https://upload.wikimedia.org/wikipedia/commons/5/5e/Living_Large_--
_Argonne%27s_First_Computer_%288056998342%29.jpg



Big Data Processing 

© 2017 Pearson Education, Inc., Hoboken, 
NJ. All rights reserved.

http://www.computerhistory.org/revolution/memory-storage/8/326



Simple Batch Systems

n Early computers were very expensive
n Important to maximize processor utilization

n Monitor
n User no longer has direct access to processor

n Job is submitted to computer operator who batches 
them together and places them on an input device

n Program branches back to the monitor when finished

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Monitor Point of View

n Monitor controls the sequence 
of  events

n Resident Monitor is software 
always in memory

n Monitor reads in job and gives 
control

n Job returns control to monitor

Interrupt
Processing

Device
Drivers

Job
Sequencing

Control Language
Interpreter

User
Program

Area

Monitor

Boundary

Figure 2.3   Memory Layout for a Resident Monitor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Processor Point of View

n Processor executes instruction from the memory 
containing the monitor

n Executes the instructions in the user program until it 
encounters an ending or error condition

n “Control is passed to a job” means processor is fetching 
and executing instructions in a user program

n “Control is returned to the monitor” means that the 
processor is fetching and executing instructions from the 
monitor program

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Job Control Language 
(JCL)

Special type of  programming 
language used to provide 

instructions to the monitor

What compiler to use

What data to use

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Desirable Hardware 
Features

• While the user program is executing, it must not alter the memory area 
containing the monitor

Memory protection

• Prevents a job from monopolizing the system

Timer

• Can only be executed by the monitor

Privileged instructions

• Gives OS more flexibility in controlling user programs

Interrupts

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Modes of Operation

User Mode
• User program executes in 

user mode 
• Certain areas of  memory are 

protected from user access
• Certain instructions may not 

be executed

Kernel Mode
• Monitor executes in kernel 

mode
• Privileged instructions may 

be executed
• Protected areas of  memory 

may be accessed

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Simple Batch System 
Overhead

n Processor time alternates between execution of  user 
programs and execution of  the monitor

n Sacrifices:
n Some main memory is now given over to the monitor

n Some processor time is consumed by the monitor

n Despite overhead, the simple batch system improves 
utilization of  the computer

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Multiprogrammed 
Batch Systems

Processor is often 
idle 

Even with 
automatic 

job 
sequencing

I/O devices 
are slow 

compared 
to processor

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 
Read one record from file 15 µs 
Execute 100 instructions 1 µs 
Write one record to file 15 µs 
TOTAL 31 µs 
 

Percent CPU Utilization  

� 

= 1
31

= 0.032 = 3.2% 

 
 

Figure 2.4  System Utilization Example 

 



Uniprogramming

The processor spends a certain amount of  time executing, until 
it reaches an I/O instruction; it must then wait until that I/O 
instruction concludes before proceeding

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait WaitRun

B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time
(b) Multiprogramming with two programs

Time
(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5   Multiprogramming Example

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Multiprogramming

n There must be enough memory to hold the OS (resident monitor) and one user 
program

n When one job needs to wait for I/O, the processor can switch to the other job, which is 
likely not waiting for I/O

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait WaitRun

B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time
(b) Multiprogramming with two programs

Time
(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5   Multiprogramming Example

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Multiprogramming

n Also known as multitasking

n Memory is expanded to hold three, four, or more programs and switch     
among all of  them

Run Wait WaitRun

Time

Run Wait WaitRun

Run
A

Run
A

Run WaitWait WaitRun

Run
B Wait WaitRun

B

Run
A

Run
A

Run
B

Run
B

Run
C

Run
C

(a) Uniprogramming

Time
(b) Multiprogramming with two programs

Time
(c) Multiprogramming with three programs

Program A

Program A

Program B

Run Wait WaitRun

Run WaitWait WaitRun

Program A

Program B

Wait WaitCombined

Run WaitWait WaitRunProgram C

Combined

Figure 2.5   Multiprogramming Example

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Time-Sharing Systems

n Can be used to handle multiple interactive jobs

n Processor time is shared among multiple users

n Multiple users simultaneously access the 
system through terminals, with the OS 
interleaving the execution of  each user 
program in a short burst or quantum of  
computation

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

 Batch Multiprogramming Time Sharing 

Principal objective Maximize processor use Minimize response time 

Source of directives to 
operating system 

Job control language 
commands provided with the 
job 

Commands entered at the 
terminal 

 

Table 2.3   Batch Multiprogramming versus Time Sharing 



Compatible Time-Sharing 
System (CTSS)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

n One of  the first time-sharing operating systems

n Developed at MIT by a group known as Project MAC

n The system was first developed for the IBM 709 in 1961

n Ran on a computer with 32,000 36-bit words of  main memory, with the resident 
monitor consuming 5000 of  that

n Utilized a technique known as time slicing

n System clock generated interrupts at a rate of  approximately one every 0.2 seconds

n At each clock interrupt the OS regained control and could assign the processor to another user

n Thus, at regular time intervals the current user would be preempted and another user loaded in

n To preserve the old user program status for later resumption, the old user programs and data were 
written out to disk before the new user programs and data were read in

n Old user program code and data were restored in main memory when that program was next 
given a turn



Major Achievements

n Operating Systems are among the most 
complex pieces of  software ever developed

n Major advances in development include:
n Processes

n Memory management

n Information protection and security
n Scheduling and resource management

n System structure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Process

n Fundamental to the structure of  operating systems

A process can be defined as:

A program in execution

An instance of  a running program

The entity that can be assigned to, and executed on, a processor

A unit of  activity characterized by a single sequential thread of  execution, a 
current state, and an associated set of  system resources

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Causes of Errors
n Nondeterminate program 

operation
n When programs share memory, 

and their execution is 
interleaved by the processor, 
they may interfere with each 
other by overwriting common 
memory areas in unpredictable 
ways

n The order in which programs 
are scheduled may affect the 
outcome of  any particular 
program

n Deadlocks
n It is possible for two or more 

programs to be hung up 
waiting for each other

n Improper synchronization
n It is often the case that a 

routine must be suspended 
awaiting an event elsewhere in 
the system

n Improper design of  the 
signaling mechanism can result 
in loss or duplication

n Failed mutual exclusion
n More than one user or program 

attempts to make use of  a shared 
resource at the same time

n There must be some sort of  
mutual exclusion mechanism that 
permits only one routine at a time 
to perform an update against the 
file

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Components of 
a Process

nThe execution context is   
essential:
n It is the internal data by 

which the OS is able to 
supervise and control the 
process

n Includes the contents of  the 
various process registers

n Includes information such 
as the priority of  the process 
and whether the process is 
waiting for the completion 
of  a particular I/O event

n A process contains 
three components:
n An executable program

n The associated data 
needed by the program 
(variables, work space, 
buffers, etc.)

n The execution context 
(or “process state”) of  
the program

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Process 

Management

§ The entire state of  the 
process at any instant is 
contained in its context

§ New features can be 
designed and incorporated 
into the OS by expanding 
the context to include any 
new information needed to 
support the feature

Figure 2.8   Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
Limit

Other
registers

i

b
h

j

b

h
Process

B

Process
A

Main
Memory

Processor
Registers

Process
list

Program
(code)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Memory Management

n The OS has five principal storage 
management responsibilities:

Process 
isolation

Automatic 
allocation 

and 
management

Support of  
modular 

programming

Protection 
and access 

control

Long-term 
storage

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Virtual Memory

n A facility that allows programs to address 
memory from a logical point of  view, without 
regard to the amount of  main memory 
physically available

n Conceived to meet the requirement of  having 
multiple user jobs reside in main memory 
concurrently

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Paging

n Allows processes to be comprised of  a number of  fixed-
size blocks, called pages

n Program references a word by means of  a virtual address, 
consisting of  a page number and an offset within the page

n Each page of  a process may be located anywhere in main 
memory

n The paging system provides for a dynamic mapping 
between the virtual address used in the program and a 
real address (or physical address) in main memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Figure 2.9   Virtual Memory Concepts

Main Memory Disk

User
program

A

0
A.0

B.0 B.1

B.5 B.6

B.2 B.3

A.1

A.2

A.7

A.8

A.5

A.9

1

2

3

4

5

6

7

8

9

10

User
program

B

0

1

2

3

4

5

6

Main memory consists of a
number of fixed-length frames, 
each equal to the size of a page.
For a program to execute, some
or all of its pages must be in
main memory.

Secondary memory (disk) can
hold many fixed-length pages. A
user program consists of some 
number of pages. Pages for all
programs plus the operating system
are on disk, as are files.

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Processor
Virtual
Address

Figure 2.10   Virtual Memory Addressing

Real
Address

Disk
Address

Memory
Management

Unit
Main

Memory

Secondary
Memory

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Information Protection 
and Security

n The nature of  the 
threat that concerns 
an organization will 
vary greatly 
depending on the 
circumstances

n The problem involves 
controlling access to 
computer systems 
and the information 
stored in them

Main 
issues Availability

Confidentiality

Data 
integrity

Authenticity

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Different Architectural 
Approaches

nDemands on operating systems require new 
ways of  organizing the OS

• Microkernel architecture
• Multithreading
• Symmetric multiprocessing
• Distributed operating systems
• Object-oriented design

Different approaches and design elements have been tried:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Traditional UNIX Systems
n Developed at Bell Labs and became operational on a PDP-7 in 1970

n The first notable milestone was porting the UNIX system from the PDP-7 to the 
PDP-11

n First showed that UNIX would be an OS for all computers

n Next milestone was rewriting UNIX in the programming language C
n Demonstrated the advantages of  using a high-level language for system code

n Was described in a technical journal for the first time in 1974

n First widely available version outside Bell Labs was Version 6 in 1976

n Version 7, released in 1978, is the ancestor of  most modern UNIX systems

n Most important of  the non-AT&T systems was UNIX BSD (Berkeley Software 
Distribution), running first on PDP and then on VAX computers

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hardware Level

Kernel Level

User Level

User Programs

Trap

Hardware Control

System Call Interface

Libraries

Device Drivers

File Subsystem Process
Control

Subsystem

character block

Buffer Cache

Inter-process
communication

Scheduler

Memory
management

Figure 2.15  Traditional UNIX Kernel



Common
Facilities

virtual
memory

framework

block
device
switch

exec
switch

a.out

file mappings

disk driver

tape driver

network
driver

tty
driver

system
processes

time-sharing
processes

RFS

s5fs

FFS

NFS

device
mappings

anonymous
mappings

coff
elf

STREAMS

vnode/vfs
interface

scheduler
framework

Figure 2.17   Modern UNIX Kernel [VAHA96]Figure 2.16  Modern UNIX Kernel

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 2.17 Unix Family Tree 

FreeBSD

4.4

11.0

7.0

6.0

4.7

11.3

11iv3

7.2

10.12

4.1.4

1970 1980 1990 2000 2010 2016

NetBSD

OpenBSD

SunOS

NextStep  3.3

Xenix OS

GNU

Commercial Unix (AT&T) UnixWare (Univel/SCO)

Solaris (Sun/Oracle)

Linux

OS X (now macOS)

HP-UX

AIX (IBM)

BSD (Berkeley Software Distribution)

BSD
Family

Research Unix (Bell Labs) 10.5

System V
Family



System V Release 4 
(SVR4)

n Developed jointly by AT&T and Sun Microsystems

n Combines features from SVR3, 4.3BSD, Microsoft Xenix System V, and 
SunOS

n New features in the release include:

n Real-time processing support

n Process scheduling classes

n Dynamically allocated data structures

n Virtual memory management

n Virtual file system

n Preemptive kernel

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



BSD

n Berkeley Software Distribution

n 4.xBSD is widely used in academic installations and has served as the basis of  a 
number of  commercial UNIX products

n 4.4BSD was the final version of  BSD to be released by Berkeley

n There are several widely used, open-source versions of  BSD
n FreeBSD

n Popular for Internet-based servers and firewalls

n Used in a number of  embedded systems

n NetBSD
n Available for many platforms

n Often used in embedded systems

n OpenBSD
n An open-source OS that places special emphasis on security

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Solaris 11

n Oracle’s SVR4-based UNIX release

n Provides all of  the features of  SVR4 plus a number of  
more advanced features such as:

n A fully preemptable, multithreaded kernel

n Full support for SMP

n An object-oriented interface to file systems

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



LINUX Overview

n Started out as a UNIX variant for the IBM PC

n Linus Torvalds, a Finnish student of  computer science, wrote the initial 
version

n Linux was first posted on the Internet in 1991

n Today it is a full-featured UNIX system that runs on virtually all platforms

n Is free and the source code is available

n Key to the success of  Linux has been the availability of  free software 
packages under the auspices of  the Free Software Foundation (FSF)

n Highly modular and easily configured

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Modular Structure

n Linux development is global and 
done by a loosely associated 
group of  independent developers

n Although Linux does not use a 
microkernel approach, it 
achieves many of  the potential 
advantages of  the approach by 
means of  its particular modular 
architecture

n Linux is structured as a 
collection of  modules, a number 
of  which can be automatically 
loaded and unloaded on demand

Loadable Modules

n Relatively independent blocks

n A module is an object file whose 
code can be linked to and unlinked 
from the kernel at runtime

n A module is executed in kernel 
mode on behalf  of  the current 
process

n Have two important 
characteristics:

n Dynamic linking
n Stackable modules

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 2.18  Example List of Linux Kernel Modules

*syms
state
extable

num_exentries
num_syms
num_gpl_syms
srcversion

FAT

version
*name
*next
module

*syms
state
extable

num_exentries
num_syms
num_gpl_syms
srcversion
version
*name
*next

value
*name
value

kernel_symbol

*name

value
*name

value
*name
value

*name

value
*name

VFAT

module

symbol_table



signals system calls

processes
& scheduler

virtual
memory

physical
memory

system
memory

network inter-
face controller

interrupts

processes

Figure 2.19  Linux Kernel Components

ha
rd

w
ar

e
us

er
 le

ve
l

ke
rn

el

CPU terminal disk

traps &
faults

char device
drivers

block device
drivers

network de-
vice drivers

file
systems

network
protocols

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



SIGHUP 
SIGQUIT 
SIGTRAP 
SIGBUS 
SIGKILL 
SIGSEGV 
SIGPIPT 
SIGTERM 
SIGCHLD 

Terminal hangup 
Keyboard quit 
Trace trap 
Bus error 
Kill signal 
Segmentation violation 
Broken pipe 
Termination 
Child status unchanged 

SIGCONT 
SIGTSTP 
SIGTTOU 
SIGXCPU 
SIGVTALRM 
SIGWINCH 
SIGPWR 
SIGRTMIN 
SIGRTMAX 

Continue 
Keyboard stop 
Terminal write 
CPU limit exceeded 
Virtual alarm clock 
Window size unchanged 
Power failure 
First real-time signal 
Last real-time signal 

 

Table 2.6   Some Linux Signals

Linux Signals

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Filesystem related 
close Close a file descriptor. 
link Make a new name for a file. 
open Open and possibly create a file or device. 
read Read from file descriptor. 
write Write to file descriptor 

Process related 

execve Execute program. 
exit Terminate the calling process. 
getpid Get process identification. 
setuid Set user identity of the current process. 
ptrace Provides a means by which a parent process my observe and control 

the execution of another process, and examine and change its core 
image and registers. 

Scheduling related 
sched_getparam Sets the scheduling parameters associated with the scheduling policy 

for the process identified by pid. 
sched_get_priority_max Returns the maximum priority value that can be used with the 

scheduling algorithm identified by policy. 
sched_setscheduler Sets both the scheduling policy (e.g., FIFO) and the associated 

parameters for the process pid. 
sched_rr_get_interval Writes into the timespec structure pointed to by the parameter tp the 

round robin time quantum for the process pid. 
sched_yield A process can relinquish the processor voluntarily without blocking 

via this system call. The process will then be moved to the end of the 
queue for its static priority and a new process gets to run. 

 Table 2.7   Some Linux System Calls (page 1 of  2) 
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Table 2.7   Some Linux System Calls (page 2 of  2) 

Interprocess Communication (IPC) related 

msgrcv A message buffer structure is allocated to receive a 
message. The system call then reads a message from the 
message queue specified by msqid into the newly created 
message buffer. 

semctl Performs the control operation specified by cmd on the 
semaphore set semid. 

semop Performs operations on selected members of the semaphore 
set semid. 

shmat Attaches the shared memory segment identified by shmid 
to the data segment of the calling process. 

shmctl Allows the user to receive information on a shared 
memory segment, set the owner, group, and permissions of 
a shared memory segment, or destroy a segment. 

Socket (networking) related 
bind  Assigns the local IP address and port for a socket. 

Returns 0 for success and –1 for error. 
connect Establishes a connection between the given socket and 

the remote socket associated with sockaddr. 
gethostname Returns local host name. 
send Send the bytes contained in buffer pointed to by *msg 

over the given socket. 
setsockopt Sets the options on a socket 

Miscellaneous 
fsync Copies all in-core parts of a file to disk, and waits 

until the device reports that all parts are on stable 
storage. 

time Returns the time in seconds since January 1, 1970. 
vhangup Simulates a hangup on the current terminal. This call 

arranges for other users to have a "clean" tty at login 
time. 

 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.



Summary
n Operating system objectives and 

functions
n User/computer interface
n Resource manager

n Evolution of  operating systems
n Serial processing
n Simple/multiprogrammed/time-

sharing batch systems
n Major achievements
n Developments leading to modern 

operating systems
n Fault tolerance

n Fundamental concepts
n Faults
n OS mechanisms

n OS design considerations for 
multiprocessor and multicore

n Microsoft Windows overview
n Traditional Unix systems

n History/description
n Modern Unix systems

n System V Release 4 (SVR4)
n BSD
n Solaris 10

n Linux
n History
n Modular structure
n Kernel components

n Android
n Software/system architecture
n Activities
n Power management

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.


