Processes |1l



Fork with file buffers

Listing 25-2: Interaction of fork() and stdio buffering

procexec/fork_stdio_buf.c $ ./fork stdio buf
#include "tlpi hdr.h" Hello world
Ciao

int
main(int argc, char *argv[])
{

printf("Hello world\n"); $ ./fork stdio buf > a

write(STDOUT FILENO, "Ciao\n", 5); $ cat a

. Ciao

if (fork() == -1) Hello world

errkxit("fork"); Hello world

/* Both child and parent continue execution here */

exit(EXIT_SUCCESS);

procexec/fork_stdio_buf.c




Process Termination

* Voluntary : exit(status)
— OS passes exit status to parent via wait(&status)
— OS frees process resources

* |Involuntary : kill(pid, signal)
— Signal can be sent by another process or by OS
— pid is for the process to be killed

— signal a signal that the process needs to be killed

 Examples : SIGTERM, SIGQUIT (ctrl+\), SIGINT (ctrl+c),
SIGHUP



Orphans

 When a parent process terminates before its child
* Adopted by first process (/sbin/init)




Zombies

* When a process terminates it becomes a zombie (or
defunct process)

— PCB in OS still exists even though program no longer executing

— Why? So that the parent process can read the child’s exit status
(through wait system call)

* When parent reads status,
— zombie entries removed from OS... process reaped!

* Suppose parent does’nt read status
— Zombie will continue to exist infinitely ... a resource leak
— These are typically found by a reaper process



