
Project 3: File Systems
CS 3113

Hard Disks

CG & AHF: CS3113: Project 3

Hard Disks

• Bytes are organized into blocks

• Blocks are read from / written to the disk at a block level
• Even if we want a single byte, we have to read the entire

block

• If we want to change one byte on a block, we must read the
block, change the byte in memory and then write back out

• This coarse organization comes from the more general use
case: we generallypull large amounts of data off of disks at
once

But: we don’t usually think in terms of blocks
CG & AHF: CS3113: Project 3

File System Abstraction

What are the key features?

CG & AHF: CS3113: Project 3

File System Abstraction

• File is a long string of bytes

• A file is accessed through a hierarchical directory
structure

(and lots of other features)

How do we go from the block to the file system?

CG & AHF: CS3113: Project 3

Projects 3 / 4

How do we go from the block to the file system?

• We will answer this by implementing our own miniature
file system, called “OUFS”

• Project 3: implement directories and directory
operations

• Project 4: implement files and file operations

CG & AHF: CS3113: Project 3

Projects 3 / 4

Virtual Disk:

• A Linux file will act as a virtual disk: 128 blocks of 256
bytes each

• Each block has a unique address: 0 … 127

• Provided: virtual disk operations that read / write one
block at a time

CG & AHF: CS3113: Project 3

OUFS Organization

What do we need? (in terms of data structure)

CG & AHF: CS3113: Project 3

OUFS Organization

• Inodes

• Content: directory listing or file contents

• Some way of tracking which blocks and inodes are
already in use

CG & AHF: CS3113: Project 3

OUFS Organization: Master Block (0)

Two allocation tables, each is an array of bytes

• Inode allocation table: one bit for every available inode
• 1 = allocated; 0 = unallocated

• Block allocation table: one bit for every available block
on the disk

• 1 = allocated; 0 = unallocated

CG & AHF: CS3113: Project 3

Inode

What is the minimal representation?

CG & AHF: CS3113: Project 3

Inode
What is the minimal representation?

• Type (File, Directory, Undefined)

• Number of references to the inode (number of directory
entries that refer to it). For project 3, this will always be
one.

• Array of block IDs that are used to store the contents of
the inode

• For our directories: we will only use the 0th block in the array

• Size of the inode
• Directories: number of contained entities

• Files: length in bytes
CG & AHF: CS3113: Project 3

Inode Blocks

• Blocks 1 to N_INODE_BLOCKS are reserved to store
only inodes

• A fixed number of inodes fit within each block
(INODES_PER_BLOCK)

CG & AHF: CS3113: Project 3

Data Blocks (remaining blocks)

• Store contents of directories and files

CG & AHF: CS3113: Project 3

Directory Entries

What do we need to represent a single entry in directory?

CG & AHF: CS3113: Project 3

Directory Entries

What do we need to represent a single entry in directory?

• Name (string)

• Inode that the name refers to
• Set to UNALLOCATED_INODE if this inode is not used

CG & AHF: CS3113: Project 3

Directory Block

• A directory block contains multiple entries

• Each directory inode has exactly one directory block
that it uses for contents

• If all are used, then the directory is “full”

CG & AHF: CS3113: Project 3

Project 3
Implement:

• An OUFS API (our “system calls”)

• Helper functions for these system calls

• Set of stand-alone executables
• zformat

• zfilez

• zmkdir

• zrmdir

• zinspect (provided)

CG & AHF: CS3113: Project 3

