Project 3: File Systems
CS 3113



Hard Disks



Hard Disks

» Bytes are organized into blocks

* Blocks are read from / written to the disk at a block level

* Even If we want a single byte, we have to read the entire
nlock

* If we want to change one byte on a block, we must read the
nlock, change the byte iIn memory and then write back out

 This coarse organization comes from the more general use
case:. we generallypull large amounts of data off of disks at
once

But: we don't usually think in terms of blocks



File System Abstraction

What are the key features?



File System Abstraction

* File Is a long string of bytes

A file Is accessed through a hierarchical directory
structure

(and lots of other features)

How do we go from the block to the file system?



Projects 3/ 4

How do we go from the block to the file system?

* We will answer this by implementing our own miniature
file system, called “OUFS”

* Project 3: implement directories and directory
operations

* Project 4: implement files and file operations



Projects 3/ 4

Virtual Disk:

* A Linux file will act as a virtual disk: 128 blocks of 256
bytes each

* Each block has a unique address: 0 ... 127

* Provided: virtual disk operations that read / write one
block at a time



OUFS Organization

What do we need? (in terms of data structure)



OUFS Organization

* |nodes
» Content: directory listing or file contents

« Some way of tracking which blocks and inodes are
already in use



OUFS Organization: Master Block (0)

Two allocation tables, each is an array of bytes

 Inode allocation table: one bit for every available inode
« 1 = allocated; O = unallocated

* Block allocation table: one bit for every available block
on the disk

e 1 = allocated:; O = unallocated




Inode

What Is the minimal representation?



Inode

What Is the minimal representation?
* Type (File, Directory, Undefined)

* Number of references to the inode (number of directory

entries that refer to it). For project 3, this will always be
one.

 Array of block IDs that are used to store the contents of
the Inode
« For our directories: we will only use the 0™ block in the array

e Size of the Inode

e Directories: number of contained entities
* Files: length in bytes



Inode Blocks

* Blocks 1 to N_INODE_BLOCKS are reserved to store
only inodes

* A fixed number of inodes fit within each block
(INODES PER BLOCK)



Data Blocks (remaining blocks)

» Store contents of directories and files



Directory Entries

What do we need to represent a single entry in directory?



Directory Entries

What do we need to represent a single entry in directory?
* Name (string)

* |Inode that the name refers to
« Set to UNALLOCATED INODE if this inode is not used



Directory Block

A directory block contains multiple entries

« Each directory inode has exactly one directory block
that it uses for contents

* If all are used, then the directory is “full”



Project 3

Implement:
* An OUFS API (our “system calls™)
* Helper functions for these system calls

» Set of stand-alone executables
e zformat
o Zfilez
e zmkadir
e zrmdir
* zinspect (provided)



