Semaphores and Threads
HW4



Semaphore addition time for multiple loops and threads on 1
129.15.66.177 46344 22 --- christangrant

Threads 2
Threads 4
Threads 8
Threads 16
012 0.I4 0:6 0.'8 1.I0 1.'2 1.14 1:6
Loops le8

More threads
are not

always better

There may be an increase in
management for new threads.




Semaphore addition time for multiple loops and threads on 1
129.15.66.177 46344 22 --- christangrant
kernel time

(Same graph 00 2 Tress:

Threads 8

b U t) 500 - Threads 16
Sys/Kernel

time

100 A

Time spent in the kernel is
more deterministic 0

0.2 0.4 0.6 0.8 1.0 1.2
Loops le8




Time

* There are three main ways of recording time in *nix systems.
* Real time = This is the amount of time as measured by a real life clock.
* User Time = The amount of time spent in user mode.
* Sys Time = The amount of time spent in kernel mode.

* Time is recorded on a per-process basis.
* Timing is stored within the process itself.

* When a child thread is terminated, its timing statistics are saved in
the process structure.

e User and Sys times are recorded across CPUs so User + Sys times may
be > than the real time.



Maintaining Mutual Exclusion

e Used a (binary) semaphore

e Other options:

e Mutex Lock http://man7.org/linux/man-
pages/man3/pthread mutex lock.3p.html

* Spin Lock http://man7.org/linux/man-pages/man3/pthread_spin_lock.3.html



http://man7.org/linux/man-pages/man3/pthread_mutex_lock.3p.html

Integer overtlow

* 160000000 * 16 is 2,560,000,000

christangrant@myosinstance: /% getcont INT_MAX

2147483647

e Better?

christangrant@myosinstance: /% getconf ULONG_MAX

164407440 7379551015

* Adding long types may be slower.



Other ways to increase program speed

* Use more than one resource to reduce competition.
* Tune parameters program size.
* If adding beyond billions reconsider atomic actions.

e Others?



