
Chapter 4
Threads

Ninth Edition
By William Stallings

Operating
Systems:
Internals

and Design
Principles

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processes and Threads

Resource Ownership

Process includes a
virtual address space
to hold the process
image
n The OS performs a

protection function to
prevent unwanted
interference between
processes with respect to
resources

Scheduling/Execution

Follows an execution path
that may be interleaved
with other processes
n A process has an execution

state (Running, Ready, etc.)
and a dispatching priority, and
is the entity that is scheduled
and dispatched by the OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Processes and Threads

n The unit of dispatching is referred to as a thread or
lightweight process

n The unit of resource ownership is referred to as a
process or task

n Multithreading - The ability of an OS to support
multiple, concurrent paths of execution within a
single process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single Threaded Approaches

n A single thread of
execution per
process, in which
the concept of a
thread is not
recognized, is
referred to as a
single-threaded
approach

n MS-DOS is an
example Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreaded Approaches

n The right half of
Figure 4.1 depicts
multithreaded
approaches

n A Java run-time
environment is an
example of a
system of one
process with
multiple threads Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process
§Defined in a multithreaded environment as “the unit

of resource allocation and a unit of protection”

§Associated with processes:
§A virtual address space that holds the process image

§ Protected access to:
§ Processors

§ Other processes (for interprocess communication)

§ Files

§ I/O resources (devices and channels)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

One or More Threads
in a Process

• An execution state (Running, Ready, etc.)
• A saved thread context when not running
• An execution stack
• Some per-thread static storage for local

variables
• Access to the memory and resources of its

processes, shared with all other threads in
that process

Each thread has:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Single-Threaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address
Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread
Control
Block

Thread
Control
Block

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Key Benefits of Threads

Takes less
time to

create a new
thread than a

process

Less time to
terminate a

thread than a
process

Switching
between two

threads takes less
time than

switching between
processes

Threads enhance
efficiency in

communication
between programs

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread Use in a
Single-User System

nForeground and background work

nAsynchronous processing

nSpeed of execution

nModular program structure

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Most of the state information dealing with
execution is maintained in thread-level data
structures

n In an OS that supports threads, scheduling and
dispatching is done on a thread basis

§Suspending a process involves suspending all
threads of the process

§Termination of a process terminates all
threads within the process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

The key states for a
thread are:

n Running
n Ready
n Blocked

Thread operations
associated with a
change in thread
state are:

n Spawn
n Block
n Unblock
n Finish

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.3 Remote Procedure Call (RPC) Using Threads

(a) RPC Using Single Thread

(b) RPC Using One Thread per Server (on a uniprocessor)

Time

Process 1

Blocked, waiting for response to RPC

Blocked, waiting for processor, which is in use by Thread B

Running

Thread A (Process 1)

Thread B (Process 1)

Server

Server

Server

Server

RPC
Request

RPC
Request

RPC
Request

RPC
Request

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Time

Blocked

I/O
request

Thread A (Process 1)

Thread B (Process 1)

Thread C (Process 2)

Figure 4.4 Multithreading Example on a Uniprocessor

Ready Running

Request
complete

Time quantum
expires

Time quantum
expires

Process
created

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread Synchronization

n It is necessary to synchronize the activities of
the various threads

n All threads of a process share the same address
space and other resources

n Any alteration of a resource by one thread
affects the other threads in the same process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Types of Threads

User Level
Thread (ULT)

Kernel level
Thread (KLT)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

User-Level Threads (ULTs)

n All thread
management is
done by the
application

n The kernel is not
aware of the
existence of threads

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(a)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(b)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready

Figure 4.6 Examples of the Relationships Between User-Level Thread States and Process States

Running

Colored state
is current state

Blocked

Process B

(c)

Ready Running

Blocked

Thread 1

Ready Running

Blocked

Thread 2

Ready Running

Blocked

Process B

(d)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Thread switching does not
require kernel mode
privileges

Scheduling can be
application specific

ULTs
can run
on any
OS

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantages of ULTs

n In a typical OS many system calls are blocking
§ As a result, when a ULT executes a system call, not

only is that thread blocked, but all of the threads within
the process are blocked as well

n In a pure ULT strategy, a multithreaded
application cannot take advantage of
multiprocessing
§ A kernel assigns one process to only one processor at a

time, therefore, only a single thread within a process
can execute at a time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Overcoming ULT
Disadvantages

Jacketing
• Purpose is to convert a blocking

system call into a non-blocking
system call

Writing an application as
multiple processes rather than
multiple threads
• However, this approach eliminates

the main advantage of threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Kernel-Level Threads (KLTs)
§ Thread management is

done by the kernel
§ There is no thread

management code in the
application level, simply
an application
programming interface
(API) to the kernel
thread facility

§ Windows is an example
of this approach

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Advantages of KLTs

n The kernel can simultaneously schedule multiple
threads from the same process on multiple
processors

n If one thread in a process is blocked, the kernel
can schedule another thread of the same process

n Kernel routines themselves can be
multithreaded

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Disadvantage of KLTs
✽The transfer of control from one thread to another

within the same process requires a mode switch to
the kernel

Operation User-Level Threads
Kernel-Level

Threads Processes

Null Fork 34 948 11,300
Signal Wait 37 441 1,840

Table 4.1
Thread and Process Operation Latencies (µs)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Combined Approaches
n Thread creation is done

completely in the user
space, as is the bulk of
the scheduling and
synchronization of
threads within an
application

n Solaris is a good
example

Figure 4.5 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Threads:Processes Description Example Systems
1:1 Each thread of execution is a

unique process with its own
address space and resources.

Traditional UNIX
implementations

M:1 A process defines an address
space and dynamic resource
ownership. Multiple threads
may be created and executed
within that process.

Windows NT, Solaris, Linux,
OS/2, OS/390, MACH

1:M A thread may migrate from
one process environment to
another. This allows a thread
to be easily moved among
distinct systems.

Ra (Clouds), Emerald

M:N Combines attributes of M:1
and 1:M cases.

TRIX

Table 4.2
Relationship between Threads and Processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.7 Performance Effect of Multiple Cores

re
la

tiv
e

sp
ee

du
p

re
la

tiv
e

sp
ee

du
p

0

2

4

6

8

21
number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%
5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21
number of processors

(b) Speedup with overheads

3 4 5 6 7 8

Figure 4.7 Performance Effect of Multiple Cores

re
la

tiv
e

sp
ee

du
p

re
la

tiv
e

sp
ee

du
p

0

2

4

6

8

21
number of processors

(a) Speedup with 0%, 2%, 5%, and 10% sequential portions

3 4 5 6

0%

2%

5%

10%

10%
5%

15%
20%

7 8

0

0.5

1.0

1.5

2.0

2.5

21
number of processors

(b) Speedup with overheads

3 4 5 6 7 8

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.8 Scaling of Database Workloads on Multiple-Processor Hardware

0
0

16

32

48

64

16 32
number of CPUs

sc
al

in
g

48 64

perf
ect

 sc
ali

ng

Oracle DSS 4-way join
TMC data mining
DB2 DSS scan & aggs
Oracle ad hoc insurance OLTP

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Applications That Benefit

§ Multithreaded native applications
§ Characterized by having a small number of highly threaded

processes

§ Multiprocess applications
§ Characterized by the presence of many single-threaded

processes

§ Java applications
§ All applications that use a Java 2 Platform, Enterprise

Edition application server can immediately benefit from
multicore technology

§ Multi-instance applications
§ Multiple instances of the application in parallel

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Multithreading

Achieves concurrency
without the overhead of
using multiple processes

Threads within the same
process can exchange

information through their
common address space and

have access to the shared
resources of the process

Threads in different
processes can exchange

information through shared
memory that has been set

up between the two
processes

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Figure 4.11 Windows Thread States

Transition

Ready

Waiting

Runnable

Not Runnable

StandbyPick to
Run Switch

Preempted

Block/
Suspend

Unblock/Resume
Resource Available

Resource
Available

Unblock
Resource Not Available

Terminate

Terminated

Running

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Solaris Process

• Includes the user’s address space, stack, and
process control blockProcess

• A user-created unit of execution within a process
User-level
Threads

• A mapping between ULTs and kernel threads
Lightweight

Processes (LWP)

• Fundamental entities that can be scheduled and
dispatched to run on one of the system processorsKernel Threads

§Makes use of four thread-related concepts:

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Hardware

Figure 4.12 Processes and Threads in Solaris

Kernel
System calls

syscall()syscall()

Process

Kernel
thread

Kernel
thread

Lightweight
process (LWP)

Lightweight
process (LWP)

user
thread

user
thread

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Process ID

UNIX Process Structure

User IDs

Signal Dispatch Table

File Descriptors

Memory Map

Priority
Signal Mask

Registers
STACK

Priority
LWP ID

Signal Mask
Registers
STACK

Processor State

Process ID

Solaris Process Structure

User IDs

Signal Dispatch Table

File Descriptors

LWP 1

Priority
LWP ID

Signal Mask
Registers
STACK

LWP 2

Memory Map

Figure 4.13 Process Structure in Traditional UNIX and Solaris [LEWI96]
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

A Lightweight Process (LWP)
Data Structure Includes:

n An LWP identifier

n The priority of this LWP and hence the kernel thread that supports it

n A signal mask that tells the kernel which signals will be accepted

n Saved values of user-level registers

n The kernel stack for this LWP, which includes system call arguments,
results, and error codes for each call level

n Resource usage and profiling data

n Pointer to the corresponding kernel thread

n Pointer to the process structure
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

IDLE

thread_create() intr()

swtch()
syscall()

wakeup()

prun() pstop() exit() reap()

preempt()
RUN

PINNED

ONPROC SLEEP

STOP ZOMBIE FREE

Figure 4.14 Solaris Thread States
© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Interrupts as Threads

§ Most operating systems contain two fundamental
forms of concurrent activity:

Processes
(threads)

Cooperate with each other and manage the use of shared data
structures by primitives that enforce mutual exclusion and
synchronize their execution

Interrupts Synchronized by preventing their handling for a period of time

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

§ Solaris unifies these two concepts into a single model, namely
kernel threads, and the mechanisms for scheduling and
executing kernel threads

§ To do this, interrupts are converted to kernel threads

Solaris Solution

§Solaris employs a set of kernel threads to
handle interrupts

n An interrupt thread has its own identifier, priority,
context, and stack

n The kernel controls access to data structures and
synchronizes among interrupt threads using
mutual exclusion primitives

n Interrupt threads are assigned higher priorities
than all other types of kernel threads

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Tasks

A process, or task, in
Linux is represented
by a task_struct data

structure

This structure
contains information

in a number of
categories

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Stopped

Ready

Running
State

Uninterruptible

Interruptible

Executing Zombie

Figure 4.15 Linux Process/Thread Model

creation
scheduling

termination

signalsignal

event
signal

or
event

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Threads

Linux does
not

recognize a
distinction
between

threads and
processes

User-level
threads are

mapped
into kernel-

level
processes

A new
process is
created by

copying the
attributes of
the current

process

The new
process can
be cloned so

that it
shares

resources

The clone()
call creates

separate
stack spaces

for each
process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Linux Namespaces
n A namespace enables a process to have a different

view of the system than other processes that have
other associated namespaces

n There are currently six namespaces in Linux
n mnt
n pid
n net
n ipc
n uts
n user

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

Summary
n Processes and threads

n Multithreading
n Thread functionality

n Types of threads
n User level and kernel level threads

n Multicore and multithreading
n Performance of Software on Multicore

n Windows process and thread management
n Management of background tasks and

application lifecycles

n Windows process
n Process and thread objects

n Multithreading
n Thread states

n Support for OS subsystems

n Solaris thread and SMP management
n Multithreaded architecture
n Motivation

n Process structure
n Thread execution

n Interrupts as threads

n Linux process and thread management
n Tasks/threads/namespaces

n Android process and thread
management
n Android applications
n Activities

n Processes and threads

n Mac OS X grand central dispatch

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved.

