CS 3113 FA 21 - Project (Homework)
Due 2021/12/07 (Please submit as a PDF document) You may write on the document or use LateX. Questions will be graded on correctness and completeness. 7 questions follow.

Banker's Algorithm

1. The system has a total of $\mathbf{1 0}$ instances of a resource. Using Banker's Algorithm, will Processes A - D all run to completion? Please show your work and explain your reasoning for your answer.

| PROCESS | CURRENT RESOURCES |
| :--- | :--- | :--- |
| ALLOCATED | |\quad MAX RESOURCES NEEDED

2. The system has a total of $\mathbf{6}$ instances of Resource X and $\mathbf{5}$ instances of Resource Y. Using Banker's Algorithm, will Processes A - C all run to completion? Please show your work and explain your reasoning for your answer.

PROCESS	CURRENT X ALLOCATED	MAX X NEEDED	CURRENT Y ALLOCATED	MAX Y NEEDED
PROCESS A	4	6	1	3
PROCESS B	0	1	3	5
PROCESS C	1	1	0	1

3. The system has a total of 14 instances of Resource X and 11 instances of Resource Y. Using Banker's Algorithm, will Processes A - D all run to completion? Please show your work and explain your reasoning for your answer.

PROCESS	CURRENT X ALLOCATED	MAX X NEEDED	CURRENT Y ALLOCATED	MAX Y NEEDED
PROCESS A	0	0	1	1
PROCESS B	0	7	0	5
PROCESS C	3	3	5	5
PROCESS D	6	6	3	5

Paging

4. Assume a simple paging system with pages of size $2^{\wedge} 5$. The process page tables are as follows (all numbers in hexadecimal):
```
P0:
0x3
0x4
0x7
P1:
0x1
0x2
P2:
0x8
0x5
0xA
```

Process 2 accesses address $0 \times 5 \mathrm{~A}$. What is the physical address that is accessed?
5. Assume a simple segmentation system, with a maximum segment size of $2^{\wedge} 6$, and the segmentation table for process PO as follows (organized by length, base):

P0:
0x10, 0x30
$0 \times 20,0 \times 58$
0x08, 0x20

When the process addresses location 0x5C, what physical address is accessed?
6. Assume a simple segmentation system, with a maximum segment size of 2^6, and the segmentation table for process PO as follows (organized by length, base):

```
P0:
0x10, 0x30
0x20, 0x58
0x08, 0x20
```

When the process addresses location 0×90, what physical address is accessed?
7. Assume a simple paging system with pages of size $2^{\wedge} 5$. The process page tables are as follows (all numbers in hexadecimal):

```
P0:
0x3
0x4
0x7
P1:
0x1
0x2
P2:
0x8
0x5
0xA
```

Process 0 accesses address 0×13. What is the physical address that is accessed?

