Bit-Wise Operators

Bit-Wise Operators

If A and B are bytes, what does this code mean?
$C=A \& B ;$

Bit-Wise Operators

If A and B are bytes, what does this code mean?
$C=A \& B ;$

The corresponding bits of A and B are ANDed together

Bit-Wise AND

$$
01011110 \text { A }
$$

10011011
 B

?
$C=A \& B$

Bit-Wise AND

Bit-Wise AND

Bit-Wise AND

Bit-Wise AND

$$
\begin{array}{ll}
01011110 & A \\
10011011 & B \\
00011010 & C=A \& B
\end{array}
$$

Logical AND

01011110
 A

10011011
???
$C=A \& \& B$

Logical AND

01011110
 7 true

10011011
B
???
$C=A \& \& B$

Logical AND

$$
\begin{array}{ll}
01011110 & y_{\text {true }}^{\mathrm{A}} \\
10011011 & y_{\text {true }} \mathrm{B}
\end{array}
$$

???
$C=A \& \& B$

Logical AND

01011110

10011011
???

 y true

Logical AND

$$
01011110 \quad y_{\text {true }}
$$

NOTE: we are assuming an 8-bit value

Representing Logical Values

Most of the time, we represent logical values using a multi-bit value. (e.g., using 8 or 16 bits). The rules are:

- A value of zero is interpreted as false
- A non-zero value is interpreted as true

Representing Logical Values

A logical operator will give a result of true or false:

- false is represented with a value of zero (0)
- true is represented with a value of one (1)

Other Operators

When coding: keep this distinction straight

Putting the Bit-Wise Operators to Work: Bit Manipulation

Assume a variable A is declared as such:

```
u_int8_t A;
```

What is the code that allows us to set bit 2 of A to 1 ? (we start counting bits from 0)

Bit Manipulation

What is the code that allows us to set bit 2 of A to 1? (we start counting bits from 0)

$$
A=A \mid 4 ;
$$

Bit Manipulation

What is the code that allows us to set bit 2 of A to 0 ?
Bit Manipulation

$$
\begin{aligned}
& \text { A to } 0 ? \\
& A=A \& 0 x F B ; \\
& \text { or } \\
& A=A \& \sim 4 ;
\end{aligned}
$$

What is the code that allows us to set bit 2 of

Bit Shifting

$$
\begin{aligned}
& \text { u_int8_t } A=0 x 5 A \text {; } \\
& u \text { int } 8 \text { t } B=A \ll 2 \text {; } \\
& \text { u_int8_t } C=A \gg 5 \text {; }
\end{aligned}
$$

What are the values of B and C ?
What mathematical operations have we performed?

