Chapter 4: Threads &
Concurrency

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

O iy
P Chapter 4: Threads

Overview

Multicore Programming
Multithreading Models
Thread Libraries
Implicit Threading
Threading Issues

Operating System Examples

- iz
00 =<2\
o

Operating System Concepts — 10t Edition 4.2 Silberschatz, Galvin and Gagne ©20

557 Objectives

B Identify the basic components of a thread, and contrast threads
and processes

B Describe the benefits and challenges of designng
multithreaded applications

B lllustrate different approaches to implicit threading including
thread pools, fork-join, and Grand Central Dispatch

B Describe how the Windows and Linux operating systems
represent threads

B Design multithreaded applications using the Pthreads, Java,
and Windows threading APIs

» = \ \\%
SF - ﬂ\;\\/
A 0%

Operating System Concepts — 10t Edition 4.3 Silberschatz, Galvin and Gagne ©2018

S - Motivation

B Most modern applications are multithreaded
B Threads run within application

B Multiple tasks with the application can be implemented by
separate threads

@ Update display

® Fetch data

@ Spell checking

® Answer a network request

B Process creation is heavy-weight while thread creation is
light-weight

B Can simplify code, increase efficiency
B Kernels are generally multithreaded

I\
Operating System Concepts — 10t Edition 4.4 Silberschatz, Galvin and Gagne ©2018

&g’;ﬁ/ Single and Multithreaded Processes

S\

code data files code data files
registers PC stack registers| | |registers| | |registers
stack stack stack
PC PC PC
thread—— ;
<«—— thread

single-threaded process multithreaded process

2R \\
N

A
Operating System Concepts — 10t Edition 45 Silberschatz, Galvin and Gagne ©2018

vt Processes and Threads

B The unit of dispatching is referred to as a thread
or lightweight process

B The unit of resource ownership is referred to as a
process or task

B Multithreading - The ability of an OS to support
multiple, concurrent paths of execution within a
single process

\

> 2
J '/‘%;\9;\
£ *’\;
A \ 2

¥

\
)

44

OpetatingiSystem Concepts — 10t Edition 4.6 Silberschatz, Galvin and Gagne ©2018

Single Threaded Approaches

B A single thread of

execution per ;
process, in which | 5 5 5
the concept of a |
thread is not onetiread :

recognized, is

referred to as a
single-threaded 5 5 5

one process
multiple threads

a p p ro aC h multiple processes multiple p
one thread per process . multiple thre d S per pro
B MS-DOS is an
5 = instruction trace
example

Figure 4.1 Threads and Processes N v‘\\‘fx N
j/ =X \
W\X

\\",

OpetatingiSystem Concepts — 10t Edition 47 Silberschatz, Galvin and Gagne ©2018

Multithreaded Approaches

B The right half of

e 038

approaches o

one process
multiple threads

B A Java run-time

environment is an
example of a 5

system of one one et per oo e e e
process with
multiple threads

Figure 4.1 Threads and Processes

\\\\\\
< 2 ‘:;:\)

\\",

OpetatingiSystem Concepts — 10t Edition 4.8 Silberschatz, Galvin and Gagne ©2018

(=

ﬂml m =
~«4%7 Multithreaded Server Architecture
(2) create new
(1) request thread to service
the request
client > server » thread

N

(3) resume listening
for additional
client requests

Operating System Concepts — 10t Edition 4.9 Silberschatz, Galvin and Gagne ©2018

B Responsiveness — may allow continued execution if part of
process is blocked, especially important for user interfaces

B Resource Sharing — threads share resources of process, easier
than shared memory or message passing

B Economy - cheaper than process creation, thread switching
lower overhead than context switching

B Scalability — process can take advantage of multicore
architectures

& = \ \\%
ST 2 s :‘*w\?“/
A 0%

Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.10

g,. Multicore Programming

B Multicore or multiprocessor systems putting pressure on
programmers, challenges include:

e Dividing activities

e Balance

e Data splitting

e Data dependency

@ Testing and debugging

B Parallelism implies a system can perform more than one task
simultaneously

B Concurrency supports more than one task making progress
® Single processor / core, scheduler providing concurrency

Operating System Concepts — 10t Edition 4.11 Silberschatz, Galvin and Gagne ©2018

. Concurrency vs. Parallelism

B Concurrent execution on single-core system:

single core T1 T2 T3 T 4 T1 T2 il

time

\ 4

B Parallelism on a multi-core system:

core 1 T T

core 2 T

Operating System Concepts — 10t Edition 4.12 Silberschatz, Galvin and Gagne ©2018

o L Multicore Programming

B Types of parallelism

@ Data parallelism — distributes subsets of the same data
across multiple cores, same operation on each

® Task parallelism — distributing threads across cores, each
thread performing unique operation

2R \\
N

A
Operating System Concepts — 10t Edition 4.13 Silberschatz, Galvin and Gagne ©2018

.fﬂ‘m‘k
M? f

P
L\

Data and Task Parallelism

data
data l l l l
parallelism
core core 1 core 5 core 3
data
task
parallelism
core o core 1 core core 3

2R \\
N

_;;>§;§§¥n
N

A
Operating System Concepts — 10t Edition 4.14 Silberschatz, Galvin and Gagne ©2018

Amdahl’s Law

|dentifies performance gains from adding additional cores to an
application that has both serial and parallel components

S is serial portion
N processing cores

1
s+

speedup <

That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

As N approaches infinity, speedup approaches 1/ S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

But does the law take into account contemporary multicore systems?

Operating System Concepts — 10t Edition 4.15 Silberschatz, Galvin and Gagne ©2018

G Amdahl’s Law

16 L} L] L] Ll Al
Ideal up
=0.05
S=0.1
(L e . . ‘ ‘ S= —
12
10 |
a
§ of
7}
6 -
4
2
0 i ; i i i i
0 2 4 6 8 10 12 14 16

Number of Processing Cores

Operating System Concepts — 10t Edition 4.16 Silberschatz, Galvin and Gagne ©2018

g
~4%7 User Threads and Kernel Threads

S\

B User threads - management done by user-level threads library
B Three primary thread libraries:
e POSIX Pthreads
® Windows threads
® Javathreads
B Kernel threads - Supported by the Kernel
B Examples — virtually all general purpose operating systems, including:
® Windows
® Linux
® Mac OS X
e iOS
® Android

g :,‘/ 4=
O <A
» -

Operating System Concepts — 10t Edition 4.17 Silberschatz, Galvin and Gagne ©20

User and Kernel Threads

:

user threads

$ S

:

:

:

kernel threads

:

Operating System Concepts — 10t Edition

4.18

user
space

kernel
space

Silberschatz, Galvin and Gagne ©2018

<5 Multithreading Models

B Many-to-One
B One-to-One

B Many-to-Many

Operating System Concepts — 10t Edition

4.19

A M
Silberschatz, Galvin and Gagne ©2018

g Many-to-One

g

B Many user-level threads mapped to
single kernel thread

B One thread blocking causes all to block

B Multiple threads may not run in parallel
on muticore system because only one
may be in kernel at a time

B Few systems currently use this model

B Examples: user threads
® Solaris Green Threads g 3 g é user

® GNU Portable Threads \?/ Space

g kernel
space
kernel threads

Operating System Concepts — 10t Edition 4.20 Silberschatz, Galvin and Gagne ©2018

gt One-to-One

Each user-level thread maps to kernel thread
Creating a user-level thread creates a kernel thread
More concurrency than many-to-one

Number of threads per process sometimes
restricted due to overhead

Examples
® Windows user threads

. user
® Linux space

ST T B s

kernel threads

Operating System Concepts — 10t Edition 4.21 Silberschatz, Galvin and Gagne ©2018

B Allows many user level threads to be
mapped to many kernel threads

B Allows the operating system to create
a sufficient number of kernel threads

B Windows with the ThreadFiber
package

B Otherwise not very common

user threads

LSS D e

kernel threads

\\‘”\
~ ¢ L
7 =
AU !\g‘\x 3

Operating System Concepts — 10t Edition 4.22 Silberschatz, Galvin and Gagne ©2018

S Two-level Model

S\

B Similar to M:M, except that it allows a user thread to be
bound to kernel thread

user threads

LSS e
——
S S5 g e

kernel threads

2R \\
N

P N7 T‘,k \
A ,&j 3
Operating System Concepts — 10t Edition 4.23 Silberschatz, Galvin and Gagne ©2018

L Thread Libraries

B Thread library provides programmer with API for creating
and managing threads

B Two primary ways of implementing
® Library entirely in user space
@ Kernel-level library supported by the OS

Operating System Concepts — 10t Edition 4.24 Silberschatz, Galvin and Gagne ©2018

I

B May be provided either as user-level or kernel-level

B A POSIX standard (IEEE 1003.1c) API for thread creation and
synchronization

B Specification, not implementation

B API specifies behavior of the thread library, implementation is
up to development of the library

B Common in UNIX operating systems (Linux & Mac OS X)

I\
Operating System Concepts — 10t Edition 4.25 Silberschatz, Galvin and Gagne ©2018

<5 Pthreads Example

#include <pthread.h>
#include <stdio.h>

#include <stdlib.h>

int sum; /* this data is shared by the thread(s) */
void *runner(void *param); /* threads call this function */

int main(int argc, char *argv[])
{
pthread t tid; /* the thread identifier */
pthread attr t attr; /* set of thread attributes */

/* set the default attributes of the thread */
pthread attr_ init(&attr) ;

/* create the thread */

pthread create(&tid, &attr, runner, argv[1]);

/* wait for the thread to exit */

pthread join(tid,NULL) ;

printf ("sum = %d\n",sum) ;

S
N

)

Operating System Concepts — 10t Edition 4.26 Silberschatz, Galvin and Gagne ©2018

S Pthreads Example (cont)

/* The thread will execute in this function */
void *runner(void *param)

{

int i, upper = atoi(param);
sum = O;

for (i = 1; i <= upper; i++)
sum += 1i;

pthread _exit(0) ;
}

I
Silberschatz, Galvin and Gagne ©2018

Operating System Concepts — 10t Edition 4.27

&«gw Pthreads Code for Joining 10 Threads

#define NUM_THREADS 10

/* an array of threads to be joined upon */
pthread t workers[NUM_THREADS];

for (int i = 0; i < NUM_THREADS; i++)
pthread_join(workers[i], NULL);

- = Vi
00 oAl
N

Operating System Concepts — 10t Edition 4.28 Silberschatz, Galvin and Gagne ©20

et a,rf Implicit Threading

B Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

B Creation and management of threads done by compilers and
run-time libraries rather than programmers

B Five methods explored
® Thread Pools
® Fork-Join
® OpenMP
@ Grand Central Dispatch
® Intel Threading Building Blocks

Operating System Concepts — 10t Edition 4.36 Silberschatz, Galvin and Gagne ©2018

o Fork-Join Parallelism

y

fork

v

Operating System Concepts — 10t Edition 4.42 Silberschatz, Galvin and Gagne ©2018

ST Signal Handling

B Signals are used in UNIX systems to notify a process that a
particular event has occurred.

B A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:
1. default
2. user-defined

B Every signal has default handler that kernel runs when
handling signal

® User-defined signal handler can override default
@ For single-threaded, signal delivered to process

\\‘”\
~ ~ L
‘4 4
A !x&fx X

Operating System Concepts — 10t Edition 4.54 Silberschatz, Galvin and Gagne ©2018

/";%(

5 Signal Handling (Cont.)

“g" N

B Where should a signal be delivered for multi-threaded?

@ Deliver the signal to the thread to which the signal
applies

® Deliver the signal to every thread in the process
@ Deliver the signal to certain threads in the process

@ Assign a specific thread to receive all signals for the
process

Operating System Concepts — 10t Edition 4.55 Silberschatz, Galvin and Gagne ©2018

: mﬂw%j -
&«;w Thread Cancellation

B Terminating a thread before it has finished
B Thread to be canceled is target thread
B Two general approaches:

@ Asynchronous cancellation terminates the target thread
immediately

@ Deferred cancellation allows the target thread to periodically
check if it should be cancelled

B Pthread code to create and cancel a thread:

pthread t tid;

/* create the thread */
pthread create(&tid, 0, worker, NULL);

/* cancel the thread */
pthread cancel (tid) ;

/* wait for the thread to terminate */
pthread join(tid,NULL);

Operating System Concepts — 10t Edition 4.56 Silberschatz, Galvin and Gagne ©2018

G Thread Cancellation (Cont.)

B Invoking thread cancellation requests cancellation, but actual
cancellation depends on thread state

| Mode | State | Type
Off Disabled -
Deferred Enabled Deferred
Asynchronous Enabled Asynchronous

B If thread has cancellation disabled, cancellation remains pending
until thread enables it

B Default type is deferred

® Cancellation only occurs when thread reaches cancellation
point

» |.e. pthread testcancel ()
» Then cleanup handler is invoked
B On Linux systems, thread cancellation is handled through signals

fi& ux" 3
Operating System Concepts — 10t Edition 4.57 Silberschatz, Galvin and Gagne ©2018

g Thread-Local Storage

B Thread-local storage (TLS) allows each thread to have its
own copy of data

B Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

B Different from local variables

@ Local variables visible only during single function
invocation

® TLS visible across function invocations
B Similar to static data
® TLS is unique to each thread

\\‘(\\!
< y o \
‘4 4
U !x&fx X

Operating System Concepts — 10t Edition 4.59 Silberschatz, Galvin and Gagne ©2018

&%ﬁ Operating System Examples

B Linux Threads

k)
Operating System Concepts — 10t Edition 4.61 Silberschatz, Galvin and Gagne ©2018

G Linux Threads

B Linux refers to them as tasks rather than threads
B Thread creation is done through clone () system call

B clone() allows a child task to share the address space of the
parent task (process)

@ Flags control behavior

flag meaning
CLONE_FS File-system information is shared.
CLONE_VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE_FILES The set of open files is shared.

B struct task struct points to process data structures
(shared or unique)

fi& ux" 3
Operating System Concepts — 10t Edition 4.62 Silberschatz, Galvin and Gagne ©2018

End of Chapter 4

Operating System Concepts — 10t Edition Silberschatz, Galvin and Gagne ©2018

