
Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads &
Concurrency

4.2 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Chapter 4: Threads

! Overview
! Multicore Programming
! Multithreading Models
! Thread Libraries
! Implicit Threading
! Threading Issues
! Operating System Examples

4.3 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Objectives

! Identify the basic components of a thread, and contrast threads
and processes

! Describe the benefits and challenges of designng
multithreaded applications

! Illustrate different approaches to implicit threading including
thread pools, fork-join, and Grand Central Dispatch

! Describe how the Windows and Linux operating systems
represent threads

! Design multithreaded applications using the Pthreads, Java,
and Windows threading APIs

4.4 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Motivation

! Most modern applications are multithreaded
! Threads run within application
! Multiple tasks with the application can be implemented by

separate threads
! Update display
! Fetch data
! Spell checking
! Answer a network request

! Process creation is heavy-weight while thread creation is
light-weight

! Can simplify code, increase efficiency
! Kernels are generally multithreaded

4.5 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single and Multithreaded Processes

4.6 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Processes and Threads

! The unit of dispatching is referred to as a thread
or lightweight process

! The unit of resource ownership is referred to as a
process or task

! Multithreading - The ability of an OS to support
multiple, concurrent paths of execution within a
single process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

4.7 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Single Threaded Approaches
! A single thread of

execution per
process, in which
the concept of a
thread is not
recognized, is
referred to as a
single-threaded
approach

! MS-DOS is an
example

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

4.8 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Approaches

! The right half of
Figure 4.1 depicts
multithreaded
approaches

! A Java run-time
environment is an
example of a
system of one
process with
multiple threads

Figure 4.1 Threads and Processes

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights
reserved.

4.9 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreaded Server Architecture

4.10 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Benefits

! Responsiveness – may allow continued execution if part of
process is blocked, especially important for user interfaces

! Resource Sharing – threads share resources of process, easier
than shared memory or message passing

! Economy – cheaper than process creation, thread switching
lower overhead than context switching

! Scalability – process can take advantage of multicore
architectures

4.11 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

! Multicore or multiprocessor systems putting pressure on
programmers, challenges include:
! Dividing activities
! Balance
! Data splitting
! Data dependency
! Testing and debugging

! Parallelism implies a system can perform more than one task
simultaneously

! Concurrency supports more than one task making progress
! Single processor / core, scheduler providing concurrency

4.12 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Concurrency vs. Parallelism
! Concurrent execution on single-core system:

! Parallelism on a multi-core system:

4.13 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multicore Programming

! Types of parallelism
! Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each
! Task parallelism – distributing threads across cores, each

thread performing unique operation

4.14 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Data and Task Parallelism

4.15 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

! Identifies performance gains from adding additional cores to an
application that has both serial and parallel components

! S is serial portion
! N processing cores

! That is, if application is 75% parallel / 25% serial, moving from 1 to 2
cores results in speedup of 1.6 times

! As N approaches infinity, speedup approaches 1 / S

Serial portion of an application has disproportionate effect on
performance gained by adding additional cores

! But does the law take into account contemporary multicore systems?

4.16 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Amdahl’s Law

4.17 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User Threads and Kernel Threads

! User threads - management done by user-level threads library
! Three primary thread libraries:

! POSIX Pthreads
! Windows threads
! Java threads

! Kernel threads - Supported by the Kernel
! Examples – virtually all general purpose operating systems, including:

! Windows
! Linux
! Mac OS X
! iOS
! Android

4.18 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

User and Kernel Threads

4.19 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Multithreading Models

! Many-to-One

! One-to-One

! Many-to-Many

4.20 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-One

! Many user-level threads mapped to
single kernel thread

! One thread blocking causes all to block
! Multiple threads may not run in parallel

on muticore system because only one
may be in kernel at a time

! Few systems currently use this model
! Examples:

! Solaris Green Threads
! GNU Portable Threads

4.21 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

One-to-One

! Each user-level thread maps to kernel thread
! Creating a user-level thread creates a kernel thread
! More concurrency than many-to-one
! Number of threads per process sometimes

restricted due to overhead
! Examples

! Windows
! Linux

4.22 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Many-to-Many Model
! Allows many user level threads to be

mapped to many kernel threads
! Allows the operating system to create

a sufficient number of kernel threads
! Windows with the ThreadFiber

package
! Otherwise not very common

4.23 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Two-level Model

! Similar to M:M, except that it allows a user thread to be
bound to kernel thread

4.24 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Libraries

! Thread library provides programmer with API for creating
and managing threads

! Two primary ways of implementing
! Library entirely in user space
! Kernel-level library supported by the OS

4.25 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads

! May be provided either as user-level or kernel-level
! A POSIX standard (IEEE 1003.1c) API for thread creation and

synchronization
! Specification, not implementation
! API specifies behavior of the thread library, implementation is

up to development of the library
! Common in UNIX operating systems (Linux & Mac OS X)

4.26 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example

4.27 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Example (cont)

4.28 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Pthreads Code for Joining 10 Threads

4.36 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Implicit Threading

! Growing in popularity as numbers of threads increase,
program correctness more difficult with explicit threads

! Creation and management of threads done by compilers and
run-time libraries rather than programmers

! Five methods explored
! Thread Pools
! Fork-Join
! OpenMP
! Grand Central Dispatch
! Intel Threading Building Blocks

4.42 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Fork-Join Parallelism

4.54 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling

! Signals are used in UNIX systems to notify a process that a
particular event has occurred.

! A signal handler is used to process signals
1. Signal is generated by particular event
2. Signal is delivered to a process
3. Signal is handled by one of two signal handlers:

1. default
2. user-defined

! Every signal has default handler that kernel runs when
handling signal
! User-defined signal handler can override default
! For single-threaded, signal delivered to process

4.55 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Signal Handling (Cont.)

! Where should a signal be delivered for multi-threaded?
! Deliver the signal to the thread to which the signal

applies
! Deliver the signal to every thread in the process
! Deliver the signal to certain threads in the process
! Assign a specific thread to receive all signals for the

process

4.56 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation

! Terminating a thread before it has finished
! Thread to be canceled is target thread
! Two general approaches:

! Asynchronous cancellation terminates the target thread
immediately

! Deferred cancellation allows the target thread to periodically
check if it should be cancelled

! Pthread code to create and cancel a thread:

4.57 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread Cancellation (Cont.)
! Invoking thread cancellation requests cancellation, but actual

cancellation depends on thread state

! If thread has cancellation disabled, cancellation remains pending
until thread enables it

! Default type is deferred
! Cancellation only occurs when thread reaches cancellation

point
4 I.e. pthread_testcancel()
4 Then cleanup handler is invoked

! On Linux systems, thread cancellation is handled through signals

4.59 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Thread-Local Storage

! Thread-local storage (TLS) allows each thread to have its
own copy of data

! Useful when you do not have control over the thread creation
process (i.e., when using a thread pool)

! Different from local variables
! Local variables visible only during single function

invocation
! TLS visible across function invocations

! Similar to static data
! TLS is unique to each thread

4.61 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Operating System Examples

! Linux Threads

4.62 Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

Linux Threads

! Linux refers to them as tasks rather than threads
! Thread creation is done through clone() system call
! clone() allows a child task to share the address space of the

parent task (process)
! Flags control behavior

! struct task_struct points to process data structures
(shared or unique)

Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 4

