
Distributed Systems
(3rd Edition)

Chapter 01: Introduction

Version: February 25, 2017

Introduction: What is a distributed system?

Distributed System

Definition
A distributed system is a collection of autonomous computing elements that
appears to its users as a single coherent system.

Characteristic features

Autonomous computing elements, also referred to as nodes, be they
hardware devices or software processes.

Single coherent system: users or applications perceive a single system⇒
nodes need to collaborate.

2 / 56

Introduction: What is a distributed system? Characteristic 1: Collection of autonomous computing elements

Collection of autonomous nodes

Independent behavior

Each node is autonomous and will thus have its own notion of time: there is no
global clock. Leads to fundamental synchronization and coordination problems.

Collection of nodes

How to manage group membership?

How to know that you are indeed communicating with an authorized
(non)member?

3 / 56

Introduction: What is a distributed system? Characteristic 1: Collection of autonomous computing elements

Organization

Overlay network

Each node in the collection communicates only with other nodes in the system,
its neighbors. The set of neighbors may be dynamic, or may even be known
only implicitly (i.e., requires a lookup).

Overlay types

Well-known example of overlay networks: peer-to-peer systems.

Structured: each node has a well-defined set of neighbors with whom it can
communicate (tree, ring).

Unstructured: each node has references to randomly selected other nodes
from the system.

4 / 56

Introduction: What is a distributed system? Characteristic 2: Single coherent system

Coherent system

Essence
The collection of nodes as a whole operates the same, no matter where, when,
and how interaction between a user and the system takes place.

Examples

An end user cannot tell where a computation is taking place
Where data is exactly stored should be irrelevant to an application
If or not data has been replicated is completely hidden

Keyword is distribution transparency

The snag: partial failures

It is inevitable that at any time only a part of the distributed system fails. Hiding
partial failures and their recovery is often very difficult and in general
impossible to hide.

5 / 56

Introduction: What is a distributed system? Middleware and distributed systems

Middleware: the OS of distributed systems

Local OS 1 Local OS 2 Local OS 3 Local OS 4

Appl. A Application B Appl. C

Distributed-system layer (middleware)

Computer 1 Computer 2 Computer 3 Computer 4

Same interface everywhere

Network

What does it contain?
Commonly used components and functions that need not be implemented by
applications separately.

6 / 56

Introduction: Design goals

What do we want to achieve?

Support sharing of resources

Distribution transparency

Openness

Scalability

7 / 56

Introduction: Design goals Supporting resource sharing

Sharing resources

Canonical examples

Cloud-based shared storage and files
Peer-to-peer assisted multimedia streaming
Shared mail services (think of outsourced mail systems)
Shared Web hosting (think of content distribution networks)

Observation

“The network is the computer”

(quote from John Gage, then at Sun Microsystems)

8 / 56

Introduction: Design goals Making distribution transparent

Distribution transparency

Types

Transparency Description
Access Hide differences in data representation and how an

object is accessed
Location Hide where an object is located
Relocation Hide that an object may be moved to another location

while in use
Migration Hide that an object may move to another location
Replication Hide that an object is replicated
Concurrency Hide that an object may be shared by several

independent users
Failure Hide the failure and recovery of an object

Types of distribution transparency 9 / 56

Introduction: Design goals Making distribution transparent

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

There are communication latencies that cannot be hidden
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an operation
before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping replicas exactly up-to-date with the master takes time
Immediately flushing write operations to disk for fault tolerance

Degree of distribution transparency 10 / 56

Introduction: Design goals Making distribution transparent

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

There are communication latencies that cannot be hidden

Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an operation
before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping replicas exactly up-to-date with the master takes time
Immediately flushing write operations to disk for fault tolerance

Degree of distribution transparency 10 / 56

Introduction: Design goals Making distribution transparent

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

There are communication latencies that cannot be hidden
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an operation
before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping replicas exactly up-to-date with the master takes time
Immediately flushing write operations to disk for fault tolerance

Degree of distribution transparency 10 / 56

Introduction: Design goals Making distribution transparent

Degree of transparency

Observation
Aiming at full distribution transparency may be too much:

There are communication latencies that cannot be hidden
Completely hiding failures of networks and nodes is (theoretically and
practically) impossible

You cannot distinguish a slow computer from a failing one
You can never be sure that a server actually performed an operation
before a crash

Full transparency will cost performance, exposing distribution of the
system

Keeping replicas exactly up-to-date with the master takes time
Immediately flushing write operations to disk for fault tolerance

Degree of distribution transparency 10 / 56

Introduction: Design goals Making distribution transparent

Degree of transparency

Exposing distribution may be good

Making use of location-based services (finding your nearby friends)

When dealing with users in different time zones

When it makes it easier for a user to understand what’s going on (when
e.g., a server does not respond for a long time, report it as failing).

Conclusion
Distribution transparency is a nice a goal, but achieving it is a different story,
and it should often not even be aimed at.

Degree of distribution transparency 11 / 56

Introduction: Design goals Making distribution transparent

Degree of transparency

Exposing distribution may be good

Making use of location-based services (finding your nearby friends)

When dealing with users in different time zones

When it makes it easier for a user to understand what’s going on (when
e.g., a server does not respond for a long time, report it as failing).

Conclusion
Distribution transparency is a nice a goal, but achieving it is a different story,
and it should often not even be aimed at.

Degree of distribution transparency 11 / 56

Introduction: Design goals Being open

Openness of distributed systems

What are we talking about?

Be able to interact with services from other open systems, irrespective of the
underlying environment:

Systems should conform to well-defined interfaces
Systems should easily interoperate
Systems should support portability of applications
Systems should be easily extensible

Interoperability, composability, and extensibility 12 / 56

Introduction: Design goals Being open

Policies versus mechanisms

Implementing openness: policies

What level of consistency do we require for client-cached data?
Which operations do we allow downloaded code to perform?
Which QoS requirements do we adjust in the face of varying bandwidth?
What level of secrecy do we require for communication?

Implementing openness: mechanisms

Allow (dynamic) setting of caching policies
Support different levels of trust for mobile code
Provide adjustable QoS parameters per data stream
Offer different encryption algorithms

Separating policy from mechanism 13 / 56

Introduction: Design goals Being open

On strict separation

Observation
The stricter the separation between policy and mechanism, the more we need
to make ensure proper mechanisms, potentially leading to many configuration
parameters and complex management.

Finding a balance

Hard coding policies often simplifies management and reduces complexity at
the price of less flexibility. There is no obvious solution.

Separating policy from mechanism 14 / 56

Introduction: Design goals Being scalable

Scale in distributed systems

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.

Scalability dimensions 15 / 56

Introduction: Design goals Being scalable

Scale in distributed systems

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.

Scalability dimensions 15 / 56

Introduction: Design goals Being scalable

Scale in distributed systems

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components

Number of users and/or processes (size scalability)

Maximum distance between nodes (geographical scalability)

Number of administrative domains (administrative scalability)

Observation
Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.

Scalability dimensions 15 / 56

Introduction: Design goals Being scalable

Size scalability

Root causes for scalability problems with centralized solutions

The computational capacity, limited by the CPUs

The storage capacity, including the transfer rate between CPUs and disks

The network between the user and the centralized service

Scalability dimensions 16 / 56

Introduction: Design goals Being scalable

Formal analysis

A centralized service can be modeled as a simple queuing system

Queue Process

Requests Response

Assumptions and notations

The queue has infinite capacity⇒ arrival rate of requests is not
influenced by current queue length or what is being processed.
Arrival rate requests: λ

Processing capacity service: µ requests per second

Fraction of time having k requests in the system

pk =
(
1− λ

µ

)(λ

µ

)k

Scalability dimensions 17 / 56

Introduction: Design goals Being scalable

Formal analysis

Utilization U of a service is the fraction of time that it is busy

U = ∑
k>0

pk = 1−p0 =
λ

µ
⇒ pk = (1−U)Uk

Average number of requests in the system

N = ∑
k≥0

k ·pk = ∑
k≥0

k · (1−U)Uk = (1−U) ∑
k≥0

k ·Uk =
(1−U)U
(1−U)2 =

U
1−U

Average throughput

X = U ·µ︸︷︷︸
server at work

+(1−U) ·0︸ ︷︷ ︸
server idle

=
λ

µ
·µ = λ

Scalability dimensions 18 / 56

Introduction: Design goals Being scalable

Formal analysis

Response time: total time take to process a request after submission

R =
N
X

=
S

1−U
⇒ R

S
=

1
1−U

with S = 1
µ

being the service time.

Observations

If U is small, response-to-service time is close to 1: a request is
immediately processed

If U goes up to 1, the system comes to a grinding halt. Solution: decrease
S.

Scalability dimensions 19 / 56

Introduction: Design goals Being scalable

Problems with geographical scalability

Cannot simply go from LAN to WAN: many distributed systems assume
synchronous client-server interactions: client sends request and waits for
an answer. Latency may easily prohibit this scheme.

WAN links are often inherently unreliable: simply moving streaming video
from LAN to WAN is bound to fail.

Lack of multipoint communication, so that a simple search broadcast
cannot be deployed. Solution is to develop separate naming and directory
services (having their own scalability problems).

Scalability dimensions 20 / 56

Introduction: Design goals Being scalable

Problems with administrative scalability

Essence
Conflicting policies concerning usage (and thus payment), management, and
security

Examples

Computational grids: share expensive resources between different
domains.

Shared equipment: how to control, manage, and use a shared radio
telescope constructed as large-scale shared sensor network?

Exception: several peer-to-peer networks

File-sharing systems (based, e.g., on BitTorrent)
Peer-to-peer telephony (Skype)
Peer-assisted audio streaming (Spotify)

Note: end users collaborate and not administrative entities.

Scalability dimensions 21 / 56

Introduction: Design goals Being scalable

Techniques for scaling

Hide communication latencies

Make use of asynchronous communication

Have separate handler for incoming response

Problem: not every application fits this model

Scaling techniques 22 / 56

Introduction: Design goals Being scalable

Techniques for scaling

Facilitate solution by moving computations to client

M
A

A
R

T
E

N

FIRST NAME

LAST NAME

E-MAIL

ServerClient

Check form Process form

MAARTEN

MVS VAN-STEEN.NET@

VAN STEEN

FIRST NAME

LAST NAME

E-MAIL

ServerClient

Check form Process form

MAARTEN

MVS@VAN-STEEN.NET

VAN STEEN
MAARTEN
VAN STEEN
MVS@VAN-STEEN.NET

Scaling techniques 23 / 56

Introduction: Design goals Being scalable

Techniques for scaling

Partition data and computations across multiple machines

Move computations to clients (Java applets)

Decentralized naming services (DNS)

Decentralized information systems (WWW)

Scaling techniques 24 / 56

Introduction: Design goals Being scalable

Techniques for scaling

Replication and caching: Make copies of data available at different machines

Replicated file servers and databases

Mirrored Web sites

Web caches (in browsers and proxies)

File caching (at server and client)

Scaling techniques 25 / 56

Introduction: Design goals Being scalable

Scaling: The problem with replication

Applying replication is easy, except for one thing

Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

Always keeping copies consistent and in a general way requires global
synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling techniques 26 / 56

Introduction: Design goals Being scalable

Scaling: The problem with replication

Applying replication is easy, except for one thing

Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

Always keeping copies consistent and in a general way requires global
synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling techniques 26 / 56

Introduction: Design goals Being scalable

Scaling: The problem with replication

Applying replication is easy, except for one thing

Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

Always keeping copies consistent and in a general way requires global
synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling techniques 26 / 56

Introduction: Design goals Being scalable

Scaling: The problem with replication

Applying replication is easy, except for one thing

Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

Always keeping copies consistent and in a general way requires global
synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling techniques 26 / 56

Introduction: Design goals Being scalable

Scaling: The problem with replication

Applying replication is easy, except for one thing

Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

Always keeping copies consistent and in a general way requires global
synchronization on each modification.

Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.

Scaling techniques 26 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Design goals Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

The network is reliable

The network is secure

The network is homogeneous

The topology does not change

Latency is zero

Bandwidth is infinite

Transport cost is zero

There is one administrator

27 / 56

Introduction: Types of distributed systems

Three types of distributed systems

High performance distributed computing systems

Distributed information systems

Distributed systems for pervasive computing

28 / 56

Introduction: Types of distributed systems High performance distributed computing

Parallel computing

Observation
High-performance distributed computing started with parallel computing

Multiprocessor and multicore versus multicomputer
Shared memory

Processor

P P P P

M M M

Interconnect

Private memory

Memory

P P P P

M M M M

Interconnect

29 / 56

Introduction: Types of distributed systems High performance distributed computing

Distributed shared memory systems

Observation
Multiprocessors are relatively easy to program in comparison to
multicomputers, yet have problems when increasing the number of processors
(or cores). Solution: Try to implement a shared-memory model on top of a
multicomputer.

Example through virtual-memory techniques

Map all main-memory pages (from different processors) into one single virtual
address space. If process at processor A addresses a page P located at
processor B, the OS at A traps and fetches P from B, just as it would if P had
been located on local disk.

Problem
Performance of distributed shared memory could never compete with that of
multiprocessors, and failed to meet the expectations of programmers. It has
been widely abandoned by now.

30 / 56

Introduction: Types of distributed systems High performance distributed computing

Cluster computing

Essentially a group of high-end systems connected through a LAN

Homogeneous: same OS, near-identical hardware
Single managing node

Local OSLocal OS Local OS Local OS

Standard network

Component

of

parallel

application

Component

of

parallel

application

Component

of

parallel

application
Parallel libs

Management

application

High-speed network

Remote access

network

Master node Compute node Compute node Compute node

Cluster computing 31 / 56

Introduction: Types of distributed systems High performance distributed computing

Grid computing

The next step: lots of nodes from everywhere

Heterogeneous

Dispersed across several organizations

Can easily span a wide-area network

Note
To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that will allow for
authorization on resource allocation.

Grid computing 32 / 56

Introduction: Types of distributed systems High performance distributed computing

Architecture for grid computing

Applications

Collective layer

Resource layer

Fabric layer

Connectivity layer

The layers

Fabric: Provides interfaces to local resources
(for querying state and capabilities, locking,
etc.)

Connectivity: Communication/transaction
protocols, e.g., for moving data between
resources. Also various authentication
protocols.

Resource: Manages a single resource, such as
creating processes or reading data.

Collective: Handles access to multiple
resources: discovery, scheduling,
replication.

Application: Contains actual grid applications in
a single organization.

Grid computing 33 / 56

Introduction: Types of distributed systems High performance distributed computing

Cloud computing

Application

Infrastructure

Computation (VM) torage (block), s , file

Hardware

Platforms

Software framework (Java/Python/.Net)
Storage ()databases

In
fr

a
s
tr

u
c
tu

re

a
a
 S

v
c

P
la

tf
o
rm

a
a
 S

v
c

S
o
ft
w

a
re

a
a

 S
v
c

MS Azure
Google App engine

Amazon S3

Amazon EC2

DatacentersCPU, memory, disk, bandwidth

Web services, multimedia, business apps

Google docs
Gmail
YouTube, Flickr

Cloud computing 34 / 56

Introduction: Types of distributed systems High performance distributed computing

Cloud computing

Make a distinction between four layers

Hardware: Processors, routers, power and cooling systems. Customers
normally never get to see these.

Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally created)
files to be organized and stored in so-called buckets.

Application: Actual applications, such as office suites (text processors,
spreadsheet applications, presentation applications). Comparable to the
suite of apps shipped with OSes.

Cloud computing 35 / 56

Introduction: Types of distributed systems High performance distributed computing

Is cloud computing cost-effective?

Observation
An important reason for the success of cloud computing is that it allows
organizations to outsource their IT infrastructure: hardware and software.
Essential question: is outsourcing also cheaper?

Approach

Consider enterprise applications, modeled as a collection of components,
each component Ci requiring Ni servers.

Application now becomes a directed graph, with a vertex representing a
component, and an arc 〈

−→
i , j〉 representing data flowing from Ci to Cj .

Two associated weights per arc:

Ti ,j is the number of transactions per time unit that causes a data
flow from Ci to Cj .
Si ,j is the total amount of data associated with Ti ,j .

Cloud computing 36 / 56

Introduction: Types of distributed systems High performance distributed computing

Is cloud computing cost-effective?

Migration plan

Figure out for each component Ci , how many ni of its Ni servers should
migrate, such that the monetary benefits reduced by additional costs for
Internet communication, are maximal.

Requirements migration plan

1 Policy constraints are met.

2 Additional latencies do not violate specific delay constraints.

3 All transactions continue to operate correctly; requests or data are not lost
during a transaction.

Cloud computing 37 / 56

Introduction: Types of distributed systems High performance distributed computing

Computing benefits

Monetary savings

Bc : benefits of migrating a compute-intensive component

Mc : total number of migrated compute-intensive components

Bs: benefits of migrating a storage-intensive component

Ms: total number of migrated storage-intensive components

Obviously, total benefits are: Bc ·Mc +Bs ·Ms

Cloud computing 38 / 56

Introduction: Types of distributed systems High performance distributed computing

Internet costs

Traffic to/from the cloud

Trlocal ,inet = ∑
Ci

(Tuser ,iSuser ,i +Ti ,user Si ,user)

Tuser ,i : transaction per time unit causing data flow from user to Ci

Suser ,i : amount of data associated with Tuser ,i

Cloud computing 39 / 56

Introduction: Types of distributed systems High performance distributed computing

Rate of transactions after migration

Some notations

Ci ,local : set of servers of Ci that continue locally.

Ci ,cloud : set of servers of Ci that are placed in the cloud.

Assume traffic distribution is the same for local and cloud server

Note that |Ci ,cloud |= ni . Let fi = ni/Ni , and si a server of Ci .

T ∗i ,j =


(1− fi) · (1− fj) ·Ti ,j when si ∈ Ci ,local and sj ∈ Cj ,local

(1− fi) · fj ·Ti ,j when si ∈ Ci ,local and sj ∈ Cj ,cloud

fi · (1− fj) ·Ti ,j when si ∈ Ci ,cloud and sj ∈ Cj ,local

fi · fj ·Ti ,j when si ∈ Ci ,cloud and sj ∈ Cj ,cloud

Cloud computing 40 / 56

Introduction: Types of distributed systems High performance distributed computing

Overall Internet costs

Notations
costlocal ,inet : per unit Internet costs to local part
costcloud ,inet : per unit Internet costs to cloud

Costs and traffic before and after migration

Tr ∗local ,inet = ∑
Ci ,local ,Cj ,local

(T ∗i ,jS
∗
i ,j +T ∗j ,iS

∗
j ,i)+ ∑

Cj ,local

(T ∗user ,jS
∗
user ,j +T ∗j ,user S

∗
j ,user)

Tr ∗cloud ,inet= ∑
Ci ,cloud ,Cj ,cloud

(T ∗i ,jS
∗
i ,j +T ∗j ,iS

∗
j ,i)+ ∑

Cj ,cloud

(T ∗user ,jS
∗
user ,j +T ∗j ,user S

∗
j ,user)

costs =costlocal ,inet(Tr ∗local ,inet −Trlocal ,inet)+costcloud ,inetTr ∗cloud ,inet

Cloud computing 41 / 56

Introduction: Types of distributed systems Distributed information systems

Integrating applications

Situation
Organizations confronted with many networked applications, but achieving
interoperability was painful.

Basic approach

A networked application is one that runs on a server making its services
available to remote clients. Simple integration: clients combine requests for
(different) applications; send that off; collect responses, and present a coherent
result to the user.

Next step

Allow direct application-to-application communication, leading to Enterprise
Application Integration.

42 / 56

Introduction: Types of distributed systems Distributed information systems

Example EAI: (nested) transactions
Transaction

Primitive Description
BEGIN TRANSACTION Mark the start of a transaction
END TRANSACTION Terminate the transaction and try to commit
ABORT TRANSACTION Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Issue: all-or-nothing

Airline database Hotel database

Subtransaction Subtransaction

Nested transaction

Two different (independent) databases

Atomic: happens indivisibly (seemingly)
Consistent: does not violate system invariants
Isolated: not mutual interference
Durable: commit means changes are permanent

Distributed transaction processing 43 / 56

Introduction: Types of distributed systems Distributed information systems

TPM: Transaction Processing Monitor

TP monitor

Server

Server

Server

Client

application

Requests

Reply

Request

Request

Request

Reply

Reply

Reply

Transaction

Observation
In many cases, the data involved in a transaction is distributed across several
servers. A TP Monitor is responsible for coordinating the execution of a
transaction.

Distributed transaction processing 44 / 56

Introduction: Types of distributed systems Distributed information systems

Middleware and EAI

Server-side

application

Server-side

application

Server-side

application

Client

application

Client

application

Communication middleware

Middleware offers communication facilities for integration

Remote Procedure Call (RPC): Requests are sent through local procedure
call, packaged as message, processed, responded through message, and
result returned as return from call.

Message Oriented Middleware (MOM): Messages are sent to logical contact
point (published), and forwarded to subscribed applications.

Enterprise application integration 45 / 56

Introduction: Types of distributed systems Distributed information systems

How to integrate applications

File transfer: Technically simple, but not flexible:

Figure out file format and layout
Figure out file management
Update propagation, and update notifications.

Shared database: Much more flexible, but still requires common data scheme
next to risk of bottleneck.

Remote procedure call: Effective when execution of a series of actions is
needed.

Messaging: RPCs require caller and callee to be up and running at the same
time. Messaging allows decoupling in time and space.

Enterprise application integration 46 / 56

Introduction: Types of distributed systems Pervasive systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

47 / 56

Introduction: Types of distributed systems Pervasive systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

47 / 56

Introduction: Types of distributed systems Pervasive systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

47 / 56

Introduction: Types of distributed systems Pervasive systems

Distributed pervasive systems

Observation
Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

47 / 56

Introduction: Types of distributed systems Pervasive systems

Ubiquitous systems

Core elements
1 (Distribution) Devices are networked, distributed, and accessible in a

transparent manner
2 (Interaction) Interaction between users and devices is highly unobtrusive
3 (Context awareness) The system is aware of a user’s context in order to

optimize interaction
4 (Autonomy) Devices operate autonomously without human intervention,

and are thus highly self-managed
5 (Intelligence) The system as a whole can handle a wide range of

dynamic actions and interactions

Ubiquitous computing systems 48 / 56

Introduction: Types of distributed systems Pervasive systems

Mobile computing

Distinctive features

A myriad of different mobile devices (smartphones, tablets, GPS devices,
remote controls, active badges.

Mobile implies that a device’s location is expected to change over time⇒
change of local services, reachability, etc. Keyword: discovery.

Communication may become more difficult: no stable route, but also
perhaps no guaranteed connectivity⇒ disruption-tolerant networking.

Mobile computing systems 49 / 56

Introduction: Types of distributed systems Pervasive systems

Mobility patterns

Issue
What is the relationship between information dissemination and human
mobility? Basic idea: an encounter allows for the exchange of information
(pocket-switched networks).

A successful strategy

Alice’s world consists of friends and strangers.

If Alice wants to get a message to Bob: hand it out to all her friends

Friend passes message to Bob at first encounter

Observation
This strategy works because (apparently) there are relatively closed
communities of friends.

Mobile computing systems 50 / 56

Introduction: Types of distributed systems Pervasive systems

Community detection

Issue
How to detect your community without having global knowledge?

Gradually build your list

1 Node i maintains familiar set Fi and community set Ci , initially both empty.
2 Node i adds j to Ci when |Fj∩Ci |

|Fj |
> λ

3 Merge two communities when |Ci ∩Cj |> γ|Ci ∪Cj |

Experiments show that λ = γ = 0.6 is good.

Mobile computing systems 51 / 56

Introduction: Types of distributed systems Pervasive systems

How mobile are people?

Experimental results

Tracing 100,000 cell-phone users during six months leads to:

5 10 50 100 500 1000

1

10
-4

10
-6

10
-2

Displacement

P
ro

b
a
b
ili

ty

Moreover: people tend to return to the same place after 24, 48, or 72 hours⇒
we’re not that mobile.

Mobile computing systems 52 / 56

Introduction: Types of distributed systems Pervasive systems

Sensor networks

Characteristics
The nodes to which sensors are attached are:

Many (10s-1000s)

Simple (small memory/compute/communication capacity)

Often battery-powered (or even battery-less)

Sensor networks 53 / 56

Introduction: Types of distributed systems Pervasive systems

Sensor networks as distributed databases

Two extremes

Operator's site

Sensor network

Sensor data
is sent directly

to operator

Operator's site

Sensor network

Query

Sensors

send only

answers

Each sensor

can process and

store data

Sensor networks 54 / 56

Introduction: Types of distributed systems Pervasive systems

Duty-cycled networks

Issue
Many sensor networks need to operate on a strict energy budget: introduce
duty cycles

Definition
A node is active during Tactive time units, and then suspended for Tsuspended
units, to become active again. Duty cycle τ:

τ =
Tactive

Tactive +Tsuspended

Typical duty cycles are 10−30%, but can also be lower than 1%.

Sensor networks 55 / 56

Introduction: Types of distributed systems Pervasive systems

Keeping duty-cycled networks in sync

Issue
If duty cycles are low, sensor nodes may not wake up at the same time
anymore and become permanently disconnected: they are active during
different, nonoverlapping time slots.

Solution
Each node A adopts a cluster ID CA, being a number.
Let a node send a join message during its suspended period.
When A receives a join message from B and CA < CB, it sends a join
message to its neighbors (in cluster CA) before joining B.
When CA > CB it sends a join message to B during B’s active period.

Note
Once a join message reaches a whole cluster, merging two clusters is very fast.
Merging means: re-adjust clocks.

Sensor networks 56 / 56

	Introduction
	What is a distributed system?
	Characteristic 1: Collection of autonomous computing elements
	Characteristic 2: Single coherent system
	Middleware and distributed systems

	Design goals
	Supporting resource sharing
	Making distribution transparent
	Being open
	Being scalable
	Pitfalls

	Types of distributed systems
	High performance distributed computing
	Distributed information systems
	Pervasive systems

