Distributed Systems
(3rd Edition)

Chapter 03: Processes

Version: February 25, 2017

Processes: Threads Introduction to threads

Introduction to threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed to
continue the execution at a later stage.

Process: A software processor in whose context one or more threads may
be executed. Executing a thread, means executing a series of
instructions in the context of that thread.

2/47

Processes: Threads Introduction to threads

Context switching

Contexts

@ Processor context: The minimal collection of values stored in the registers
of a processor used for the execution of a series of instructions (e.g.,
stack pointer, addressing registers, program counter).

3/47

Processes: Threads Introduction to threads

Context switching

Contexts

@ Processor context: The minimal collection of values stored in the registers
of a processor used for the execution of a series of instructions (e.g.,
stack pointer, addressing registers, program counter).

@ Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e., processor
context, state).

3/47

Processes: Threads Introduction to threads

Context switching

Contexts

@ Processor context: The minimal collection of values stored in the registers
of a processor used for the execution of a series of instructions (e.g.,
stack pointer, addressing registers, program counter).

@ Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e., processor
context, state).

@ Process context: The minimal collection of values stored in registers and
memory, used for the execution of a thread (i.e., thread context, but now
also at least MMU register values).

3/47

Processes: Threads Introduction to threads

Context switching

Observations

@ Threads share the same address space. Thread context switching can be
done entirely independent of the operating system.

@ Process switching is generally (somewhat) more expensive as it involves
getting the OS in the loop, i.e., trapping to the kernel.

© Creating and destroying threads is much cheaper than doing so for
processes.

4/47

Processes: Threads Introduction to threads

Why use threads

Some simple reasons

@ Avoid needless blocking: a single-threaded process will block when doing
I/O; in a multi-threaded process, the operating system can switch the CPU
to another thread in that process.

@ Exploit parallelism: the threads in a multi-threaded process can be
scheduled to run in parallel on a multiprocessor or multicore processor.

@ Avoid process switching: structure large applications not as a collection of
processes, but through multiple threads.

Thread usage in nondistributed systems 5/47

Processes: Threads Introduction to threads

Avoid process switching

Avoid expensive context switching

Process A Process B
S1: Switch from user space
to kemel space] | S3: Switch from kernel
I JA_// space to user space
A Py J
Operating system

S2: Switch context from
process A to process B

Trade-offs
@ Threads use the same address space: more prone to errors

@ No support from OS/HW to protect threads using each other's memory

@ Thread context switching may be faster than process context switching

Thread usage in nondistributed systems 6/47

Processes: Threads Introduction to threads

The cost of a context switch

Consider a simple clock-interrupt handler
@ direct costs: actual switch and executing code of the handler

@ indirect costs: other costs, notably caused by messing up the cache

What a context switch may cause: indirect costs

MRU E]
(a) before the context switch
(b) after the context switch

LRU E] (c) after accessing block D.

(@) (b) ()

Thread usage in nondistributed systems

7147

Processes: Threads Introduction to threads

Threads and operating systems

Should an OS kernel provide threads, or should they be implemented as
user-level packages?

User-space solution

@ All operations can be completely handled within a single process =
implementations can be extremely efficient.

@ All services provided by the kernel are done on behalf of the process in
which a thread resides = if the kernel decides to block a thread, the
entire process will be blocked.

@ Threads are used when there are lots of external events: threads block on
a per-event basis = if the kernel can’t distinguish threads, how can it
support signaling events to them?

Thread implementation 8/47

Processes: Threads Introduction to threads

Threads and operating systems

Kernel solution
The whole idea is to have the kernel contain the implementation of a thread
package. This means that all operations return as system calls:

@ Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

@ handling external events is simple: the kernel (which catches all events)
schedules the thread associated with the event.

@ The problem is (or used to be) the loss of efficiency due to the fact that
each thread operation requires a trap to the kernel.

v

Try to mix user-level and kernel-level threads into a single concept, however,
performance gain has not turned out to outweigh the increased complexity.

Thread implementation 9/47

Processes: Threads

Introduction to threads
Lightweight processes
Basic idea

Introduce a two-level threading approach: lightweight processes that can
execute user-level threads.

Thread state

User space
| — Thread

’ }7* Lightweight process

Kernel space

LWP executing a thread

Thread implementation 10/47

Processes: Threads Introduction to threads

Lightweight processes

Principle operation

@ User-level thread does system call = the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.

Thread implementation 11/47

Processes: Threads Introduction to threads

Lightweight processes

Principle operation

@ User-level thread does system call = the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.

@ The kernel can schedule another LWP having a runnable thread bound to
it. Note: this thread can switch to any other runnable thread currently in
user space.

Thread implementation 11/47

Processes: Threads Introduction to threads

Lightweight processes

Principle operation

@ User-level thread does system call = the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.

@ The kernel can schedule another LWP having a runnable thread bound to
it. Note: this thread can switch to any other runnable thread currently in
user space.

@ A thread calls a blocking user-level operation = do context switch to a
runnable thread, (then bound to the same LWP).

Thread implementation 11/47

Processes: Threads Introduction to threads

Lightweight processes

Principle operation

@ User-level thread does system call = the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.

@ The kernel can schedule another LWP having a runnable thread bound to
it. Note: this thread can switch to any other runnable thread currently in
user space.

@ A thread calls a blocking user-level operation = do context switch to a
runnable thread, (then bound to the same LWP).

@ When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

Thread implementation 11/47

Processes: Threads Introduction to threads

Lightweight processes

Principle operation

@ User-level thread does system call = the LWP that is executing that
thread, blocks. The thread remains bound to the LWP.

@ The kernel can schedule another LWP having a runnable thread bound to
it. Note: this thread can switch to any other runnable thread currently in
user space.

@ A thread calls a blocking user-level operation = do context switch to a
runnable thread, (then bound to the same LWP).

@ When there are no threads to schedule, an LWP may remain idle, and
may even be removed (destroyed) by the kernel.

v

This concept has been virtually abandoned — it’s just either user-level or
kernel-level threads.

Thread implementation 11/47

Processes: Threads

Using threads at the client side

Threads in distributed systems

Multithreaded web client
Hiding network latencies:
@ Web browser scans an incoming HTML page, and finds that more files
need to be fetched.

@ Each file is fetched by a separate thread, each doing a (blocking) HTTP
request.

@ As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

@ A client does several calls at the same time, each one by a different
thread.

@ It then waits until all results have been returned.
@ Note: if calls are to different servers, we may have a linear speed-up.

Multithreaded clients 12/47

Processes: Threads Threads in distributed systems

Multithreaded clients: does it help?

Thread-level parallelism: TLP

Let ¢; denote the fraction of time that exactly i threads are being executed
simultaneously.
Z[1 I CI
1-0co
with N the maximum number of threads that (can) execute at the same time.

TLP =

Multithreaded clients 13/47

Processes: Threads Threads in distributed systems

Multithreaded clients: does it help?

Thread-level parallelism: TLP

Let ¢; denote the fraction of time that exactly i threads are being executed
simultaneously.
):511 i-Cj
1-0co
with N the maximum number of threads that (can) execute at the same time.

TLP =

Practical measurements

A typical Web browser has a TLP value between 1.5 and 2.5 = threads are
primarily used for logically organizing browsers.

Multithreaded clients 13/47

Processes: Threads

Using threads at the server side

Threads in distributed systems

Improve performance

@ Starting a thread is cheaper than starting a new process.

@ Having a single-threaded server prohibits simple scale-up to a
multiprocessor system.

@ As with clients: hide network latency by reacting to next request while
previous one is being replied.

Better structure

@ Most servers have high 1/0 demands. Using simple, well-understood
blocking calls simplifies the overall structure.

@ Multithreaded programs tend to be smaller and easier to understand due
to simplified flow of control.

Multithreaded servers 14/ 47

Processes: Threads Threads in distributed systems

Why multithreading is popular: organization

Dispatcher/worker model

) Request dispatched
Dispatcher thread to a worker thread Server

/

LI

Operating system

| 1 Worker thread

Request coming in A
from the network

Overview
Model Characteristics
Multithreading Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls

Multithreaded servers 15/47

Processes: Virtualization

Virtualization

Observation

Virtualization is important:

@ Hardware changes faster than software
@ Ease of portability and code migration
@ |solation of failing or attacked components

Principle of virtualization

Principle: mimicking interfaces

Program
[Interface A
Program Implementation of
mimicking Aon B
[Interface A [Interface B

Hardware/software system A

Hardware/software system B

16 /47

Processes: Virtualization Principle of virtualization

Mimicking interfaces

Four types of interfaces at three different levels

@ |Instruction set architecture: the set of machine instructions, with two
subsets:
e Privileged instructions: allowed to be executed only by the operating
system.
e General instructions: can be executed by any program.

@ System calls as offered by an operating system.
@ Library calls, known as an application programming interface (API)

Types of virtualization 17 /47

Processes: Virtualization Principle of virtualization

Ways of virtualization

(a) Process VM, (b) Native VMM, (c) Hosted VMM

Application/Libraries

Application/Libraries

’ Application/Libraries ‘ Operating system

I I
Runtime system ’ Operating systel‘ ’ Virtual machine monitor
I I I
Operating system ’ Virtual machine monitor ’ Operating system
I TT I I I
Hardware ‘ Hardware ‘ Hardware ‘
(@) (b) ()

Differences

(a) Separate set of instructions, an interpreter/emulator, running atop an OS.
(b) Low-level instructions, along with bare-bones minimal operating system
(c) Low-level instructions, but delegating most work to a full-fledged OS.

Types of virtualization 18/47

Processes: Virtualization Principle of virtualization

Zooming into VMs: performance

Refining the organization

’ Application/Libraries
I I
’ Guest operatmg system @ Rrivileged instruction: if and only if
"V _— : executed in user mode, it causes
Yival machine monttor a trap to the operating system
Privileged | Host operating system @ Nonprisdiged instruction: the rest

E— instructions

instructions —4 T

Hardware

Special instructions

@ Control-sensitive instruction: may affect configuration of a machine (e.g.,
one affecting relocation register or interrupt table).

@ Behavior-sensitive instruction: effect is partially determined by context
(e.g., POPF sets an interrupt-enabled flag, but only in system mode).

Types of virtualization 19/47

Processes: Virtualization Principle of virtualization

Condition for virtualization

For any conventional computer, a virtual machine monitor may be constructed
if the set of sensitive instructions for that computer is a subset of the set of
privileged instructions.

Problem: condition is not always satisfied

There may be sensitive instructions that are executed in user mode without
causing a trap to the operating system.

Solutions
@ Emulate all instructions
@ Wrap nonprivileged sensitive instructions to divert control to VMM

@ Paravirtualization: modify guest OS, either by preventing nonprivileged
sensitive instructions, or making them nonsensitive (i.e., changing the
context).

Types of virtualization 20/47

Processes: Virtualization Application of virtual machines to distributed systems

VMs and cloud computing

Three types of cloud services

@ Infrastructure-as-a-Service covering the basic infrastructure
@ Platform-as-a-Service covering system-level services
@ Software-as-a-Service containing actual applications

v

Instead of renting out a physical machine, a cloud provider will rent out a VM
(or VMM) that may possibly be sharing a physical machine with other
customers = almost complete isolation between customers (although
performance isolation may not be reached).

21/47

Processes: Clients

Client-server interaction

Distinguish application-level and middleware-level solutions

Client machine

Server machine

Client machine

Application Application Application Application I
Application- Application-
n specific n independent
Middleware protocol Middleware Middleware protocol Middleware
Local OS L:ocal os Local OS L:ocal os

Server machine

Network

J—l\;’.’ [/./J_

Network

Networked user interfaces

22/ 47

Processes: Clients

Example: The X Window system

Basic organization

Application server

Application server

Window Application
manager
I I I
[Xib , | [Xib
Local OS Local OS

N

Xlib interface

X protocol

Networked user interfaces

User's terminal

X kernel

Device drivers

Terminal (includes display
keyboard, mouse, etc.)

Example: The X window system

23/47

Processes: Clients

Example: The X Window system

Basic organization

Application server

Application server

Window Application
manager

| I | |
[Xib , | [Xib 5 |
Local OS Local OS

-

Xlib interface

X protocol

Networked user interfaces

User's terminal

X kernel

Device drivers

Terminal (includes display
keyboard, mouse, etc.)

The application acts as a client to the X-kernel, the latter running as a server
on the client’s machine.

Example: The X window system

23/47

Processes: Clients

Improving X

Networked user interfaces

Practical observations

@ There is often no clear separation between application logic and
user-interface commands

@ Applications tend to operate in a tightly synchronous manner with an X
kernel

Alternative approaches

@ Let applications control the display completely, up to the pixel level (e.g.,
VNC)

@ Provide only a few high-level display operations (dependent on local video
drivers), allowing more efficient display operations.

Thin-client network computing 24 /47

Processes: Clients

Client-side software

Client-side software for distribution transparency

Generally tailored for distribution transparency

@ Access transparency: client-side stubs for RPCs

@ Location/migration transparency: let client-side software keep track of
actual location

@ Replication transparency: multiple invocations handled by client stub:

Client machine Server 1 Server 2 Server 3
Client Server Server Server
appl appl appl appl
v

Client side handles
licati
request replication Replicated request

@ Failure transparency: can often be placed only at client (we're trying to
mask server and communication failures).

25/47

Processes: Servers General design issues

Servers: General organization

Basic model
A process implementing a specific service on behalf of a collection of clients. It
waits for an incoming request from a client and subsequently ensures that the

request is taken care of, after which it waits for the next incoming request.

26/ 47

Processes: Servers General design issues

Concurrent servers

Two basic types
@ lterative server: Server handles the request before attending a next
request.

@ Concurrent server: Uses a dispatcher, which picks up an incoming
request that is then passed on to a separate thread/process.

Concurrent servers are the norm: they can easily handle multiple requests,
notably in the presence of blocking operations (to disks or other servers).

Concurrent versus iterative servers 27 /47

Processes: Servers

Contacting a server

Observation: most services are tied to a specific port

ftp-data
ftp
telnet
smtp
www

20
21
23
25
80

File Transfer [Default Data]
File Transfer [Control]
Telnet

Simple Mail Transfer

Web (HTTP)

General design issues

Dynamically assigning an end point

Server machine

2. Request

Client machiney

a

-l
1. Ask for Daemon

end point

Contacting a server: end points

Register

: Client machine service Specific

End-point service

table

Server machine

2. Continue

L| Super-
1. Request server

Create server
and hand off
request

28/47

Processes: Servers General design issues

Out-of-band communication

Issue

Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Interrupting a server 29 /47

Processes: Servers General design issues

Out-of-band communication

Issue
Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1: Use a separate port for urgent data

@ Server has a separate thread/process for urgent messages
@ Urgent message comes in = associated request is put on hold
@ Note: we require OS supports priority-based scheduling

Interrupting a server 29/ 47

Processes: Servers General design issues

Out-of-band communication

Issue

Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1: Use a separate port for urgent data

@ Server has a separate thread/process for urgent messages
@ Urgent message comes in = associated request is put on hold
@ Note: we require OS supports priority-based scheduling

Solution 2: Use facilities of the transport layer

@ Example: TCP allows for urgent messages in same connection
@ Urgent messages can be caught using OS signaling techniques

Interrupting a server 29 /47

Processes: Servers General design issues

Servers and state

Stateless servers

Never keep accurate information about the status of a client after having
handled a request:

@ Don'’t record whether a file has been opened (simply close it again after
access)

@ Don’t promise to invalidate a client’s cache

@ Don't keep track of your clients

Stateless versus stateful servers 30/ 47

Processes: Servers General design issues

Servers and state

Stateless servers

Never keep accurate information about the status of a client after having
handled a request:

@ Don'’t record whether a file has been opened (simply close it again after
access)

@ Don’t promise to invalidate a client’s cache

@ Don't keep track of your clients

Consequences

@ Clients and servers are completely independent

@ State inconsistencies due to client or server crashes are reduced

@ Possible loss of performance because, e.g., a server cannot anticipate
client behavior (think of prefetching file blocks)

Stateless versus stateful servers 30/ 47

Processes: Servers General design issues

Servers and state

Stateless servers

Never keep accurate information about the status of a client after having
handled a request:

@ Don’t record whether a file has been opened (simply close it again after
access)

@ Don’t promise to invalidate a client’s cache

@ Don't keep track of your clients

Consequences

@ Clients and servers are completely independent

@ State inconsistencies due to client or server crashes are reduced

@ Possible loss of performance because, e.g., a server cannot anticipate
client behavior (think of prefetching file blocks)

V.

Does connection-oriented communication fit into a stateless design?

Stateless versus stateful servers 30/47

Processes: Servers General design issues

Servers and state

Stateful servers
Keeps track of the status of its clients:
@ Record that a file has been opened, so that prefetching can be done

@ Knows which data a client has cached, and allows clients to keep local
copies of shared data

Stateless versus stateful servers 31/47

Processes: Servers General design issues

Servers and state

Stateful servers
Keeps track of the status of its clients:

@ Record that a file has been opened, so that prefetching can be done
@ Knows which data a client has cached, and allows clients to keep local
copies of shared data

v

The performance of stateful servers can be extremely high, provided clients
are allowed to keep local copies. As it turns out, reliability is often not a major
problem.

o

Stateless versus stateful servers 31/47

Processes: Servers Server clusters

Three different tiers

Common organization

Logical switch Application/compute servers Distributed
(possibly multiple) file/database

|
1
|
| system
|
|
|
|

|

|

|

|

|

|

|

|
Dispatched 1
request |
1

|

|

|

|

|

|

|

|

|

|
Client requests I_ / l
.\\ ‘

First tier Second tier Third tier)

The first tier is generally responsible for passing requests to an appropriate
server: request dispatching

Local-area clusters 32/47

Processes: Servers

Request Handling

Server clusters

Observation

Having the first tier handle all communication from/to the cluster may lead to a
bottleneck.

v

Logically a
single TCP - Response .
connection
Request *
eques
L]
Client Request » Switch | (handed off) .
L]

Server

Local-area clusters 33/47

Processes: Servers Server clusters

Server clusters

The front end may easily get overloaded: special measures may be needed

@ Transport-layer switching: Front end simply passes the TCP request to
one of the servers, taking some performance metric into account.

@ Content-aware distribution: Front end reads the content of the request
and then selects the best server.

v

6. Server responses

Application

5. Forward server 3. Hand off
other TCP connection
messages Distributor
Other messages | Dis-
Client 5| Switch 4. Inform patcher
Setup request \iWitCh
1. Pass setup request & Distributor [5 nighatcher selects
to a distributor server
Application
server

Local-area clusters 34 /47

Processes: Servers Server clusters

When servers are spread across the Internet

Observation

Spreading servers across the Internet may introduce administrative problems.

These can be largely circumvented by using data centers from a single cloud
provider.

Request dispatching: if locality is important
Common approach: use DNS:

@ Client looks up specific service through DNS - client’s IP address is part
of request

©@ DNS server keeps track of replica servers for the requested service, and
returns address of most local server.

v

To keep client unaware of distribution, let DNS resolver act on behalf of client.
Problem is that the resolver may actually be far from local to the actual client.

v

Wide-area clusters 35/47

Processes: Servers

Distributed servers with stable IPv6 address(es)

Transparency through Mobile IP

Believes server Client 1
has address HA

Believes it is
connected to X

Believes location
of X is CA1 |

Believes server Client 2
has address HA

Believes it is
connected to X

Believes location
of X is CA2

Knows that Client 1
believes it is X

Access poin
with address CA1

Access point

with address CA2

Knows that Client 2
believes it is X

Distributed server X

Server 2

1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Server clusters

Wide-area clusters

Processes: Servers Server clusters

Distributed servers: addressing details

Essence: Clients having MobilelPv6 can transparently set up a connection to
any peer

@ Client C sets up connection to IPv6 home address HA

@ HAis maintained by a (network-level) home agent, which hands off the
connection to a registered care-of address CA.

@ C can then apply route optimization by directly forwarding packets to
address CA (i.e., without the handoff through the home agent).

Wide-area clusters 37/47

Processes: Servers

Distributed servers: addressing details

Server clusters

Essence: Clients having MobilelPv6 can transparently set up a connection to
any peer

@ Client C sets up connection to IPv6 home address HA

@ HAis maintained by a (network-level) home agent, which hands off the
connection to a registered care-of address CA.

@ C can then apply route optimization by directly forwarding packets to
address CA (i.e., without the handoff through the home agent).

Origin server maintains a home address, but hands off connections to address
of collaborating peer = origin server and peer appear as one server.

v

Wide-area clusters 37/47

Processes: Servers Server clusters

Example: PlanetLab

Essence

Different organizations contribute machines, which they subsequently share for
various experiments.

v

We need to ensure that different distributed applications do not get into each
other’s way = virtualization

Case study: PlanetLab 38/47

Processes: Servers Server clusters

PlanetLab basic organization

Overview
User-assigned Priviliged management
virtual machines virtual machines
o ||| ||| | 2| a0
o o o o o o o o o o
@ &3 &5 & || AR]
Vserver Vserver Vserver Vserver Vserver
Linux enhanced operating system
Hardware
Vserver
Independent and protected environment with its own libraries, server versions,
and so on. Distributed applications are assigned a collection of vservers

distributed across multiple machines

Case study: PlanetLab 39/47

Processes: Servers Server clusters

PlanetLab VServers and slices

Essence

@ Each Vserver operates in its own environment (cf. chroot).

@ Linux enhancements include proper adjustment of process IDs (e.g.,
init having ID 0).

@ Two processes in different Vservers may have same user ID, but does not
imply the same user.

v

Separation leads to slices

Node —>(I| (W] (W) (O] (O
nlEEERE

vsener = ([O[[C] [O] [0 (@
EERGEIREIRE

Case study: PlanetLab 40/ 47

Processes: Code migration Reasons for migrating code

Reasons to migrate code

Load distribution

@ Ensuring that servers in a data center are sufficiently loaded (e.g., to
prevent waste of energy)

@ Minimizing communication by ensuring that computations are close to
where the data is (think of mobile computing).

Flexibility: moving code to a client when needed

2. Client and server
communicate
Server

» 1. Client fetches code
Service-specific
client-side code

Code repository

\ 4

41/47

Processes: Code migration

Models for code migration

Cs

REV

Before execution

Reasons for migrating code

After execution

Client Server Client Server
code code
exec exec*

resource resource
code code
exec — exec*

resource resource

CS: Client-Server

REV: Remote evaluation

42/ 47

Processes: Code migration

Models for code migration

CoD

MA

Before execution

Reasons for migrating code

After execution

Client Server Client Server
code code
exec exec*
resource resource
code code
exec exec*
resource resource resource resource

CoD: Code-on-demand

MA: Mobile agents

43/47

Processes: Code migration Reasons for migrating code

Strong and weak mobility

Object components
@ Code segment: contains the actual code
@ Data segment: contains the state

@ Execution state: contains context of thread executing the object’s code

Weak mobility: Move only code and data segment (and reboot execution)
@ Relatively simple, especially if code is portable

@ Distinguish code shipping (push) from code fetching (pull)

Strong mobility: Move component, including execution state
@ Migration: move entire object from one machine to the other

@ Cloning: start a clone, and set it in the same execution state.

44 /47

Processes: Code migration Migration in heterogeneous systems

Migration in heterogeneous systems

Main problem
@ The target machine may not be suitable to execute the migrated code

@ The definition of process/thread/processor context is highly dependent on
local hardware, operating system and runtime system

@ Interpreted languages, effectively having their own VM

@ Virtual machine monitors

45/ 47

Processes: Code migration Migration in heterogeneous systems

Migrating a virtual machine

Migrating images: three alternatives

@ Pushing memory pages to the new machine and resending the ones that
are later modified during the migration process.

@ Stopping the current virtual machine; migrate memory, and start the new
virtual machine.

© Letting the new virtual machine pull in new pages as needed: processes
start on the new virtual machine immediately and copy memory pages on
demand.

46 /47

Processes: Code migration Migration in heterogeneous systems

Performance of migrating virtual machines

Problem

A complete migration may actually take tens of seconds. We also need to
realize that during the migration, a service will be completely unavailable for
multiple seconds.

Measurements regarding response times during VM migration

. Migration

Downtime

Response time —»

Time —»

47 /47

	Processes
	Threads
	Introduction to threads
	Threads in distributed systems

	Virtualization
	Principle of virtualization
	Application of virtual machines to distributed systems

	Clients
	Networked user interfaces
	Client-side software for distribution transparency

	Servers
	General design issues
	Object servers
	Example: The Apache Web server
	Server clusters

	Code migration
	Reasons for migrating code
	Migration in heterogeneous systems

