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Consistency and replication: Introduction Reasons for replication

Performance and scalability

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting
operations are done in the the same order everywhere

Conflicting operations: From the world of transactions

Read–write conflict: a read operation and a write operation act
concurrently
Write–write conflict: two concurrent write operations

Issue
Guaranteeing global ordering on conflicting operations may be a costly
operation, downgrading scalability Solution: weaken consistency requirements
so that hopefully global synchronization can be avoided
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Consistency and replication: Data-centric consistency models

Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the data
store specifies precisely what the results of read and write operations are in
the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Distributed data store

Process Process Process

Local copy
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Consistency and replication: Data-centric consistency models Continuous consistency

Continuous Consistency

We can actually talk about a degree of consistency

replicas may differ in their numerical value
replicas may differ in their relative staleness
there may be differences with respect to (number and order) of performed
update operations

Conit
Consistency unit⇒ specifies the data unit over which consistency is to be
measured.

4 / 33



Consistency and replication: Data-centric consistency models Continuous consistency

Example: Conit

<  5, B> g g + 45¬ [ g =   45 ]

[ =   95 ]g

[ =   78 ]p

[ = 558 ]d

<  8, A>

<  9, A>

<10, A>

g g 5+ 0¬

p p 78+¬

d d + 558¬

Operation Result

d // distance= 558
g // gas=   95
p = // price78

Conit

<  5, B> g g + 45¬ [ g =    45 ]

[ p =    70 ]

[ d =  412 ]

<  6, B>

<  7, B>

p p + 70¬

d d + 412¬

Operation Result

d // distance= 412
g // gas=   45
p = // price70

Conit

Replica A

Vector clock A = (11, 5)

Order deviation = 3

Numerical deviation = (2, 482)

Replica B

Vector clock B = (0, 8)

Order deviation = 1

Numerical deviation = (3, 686)

Conit (contains the variables g, p, and d)

Each replica has a vector clock: ([known] time @ A, [known] time @ B)
B sends A operation [〈5,B〉 : g← d +45]; A has made this operation
permanent (cannot be rolled back)
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d // distance= 412
g // gas=   45
p = // price70

Conit

Replica A

Vector clock A = (11, 5)

Order deviation = 3

Numerical deviation = (2, 482)

Replica B

Vector clock B = (0, 8)

Order deviation = 1

Numerical deviation = (3, 686)

Conit (contains the variables g, p, and d)

A has three pending operations⇒ order deviation = 3
A missed two operations from B; max diff is 70 + 412 units⇒ (2,482)
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Consistency and replication: Data-centric consistency models Consistent ordering of operations

Sequential consistency

Definition
The result of any execution is the same as if the operations of all processes
were executed in some sequential order, and the operations of each individual
process appear in this sequence in the order specified by its program.

(a) A sequentially consistent data store. (b) A data store that is not sequentially
consistent

P1: W(x)a

W(x)b

R(x)b

R(x)b R(x)a

R(x)a

P2:

P3:

P4:

P1: W(x)a

W(x)b

R(x)b

R(x)a R(x)b

R(x)a

P2:

P3:

P4:

(a) (b)
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Consistency and replication: Data-centric consistency models Consistent ordering of operations

Causal consistency

Definition
Writes that are potentially causally related must be seen by all processes in the
same order. Concurrent writes may be seen in a different order by different
processes.

(a) A violation of a causally-consistent store. (b) A correct sequence of events
in a causally-consistent store

P1: W(x)a

R(x)aP2:

P3:

P4:

W(x)b

R(x)a

R(x)a

R(x)b

R(x)b

P1: W(x)a

P2:

P3:

P4:

W(x)b

R(x)a

R(x)a

R(x)b

R(x)b

(a) (b)
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Consistency and replication: Data-centric consistency models Consistent ordering of operations

Grouping operations

Definition

Accesses to locks are sequentially consistent.

No access to a lock is allowed to be performed until all previous writes
have completed everywhere.

No data access is allowed to be performed until all previous accesses to
locks have been performed.

Basic idea
You don’t care that reads and writes of a series of operations are immediately
known to other processes. You just want the effect of the series itself to be
known.

Grouping operations 9 / 33
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Consistency and replication: Data-centric consistency models Consistent ordering of operations

Grouping operations

A valid event sequence for entry consistency
L(x) W(x)a  L(y) W(y)b  U(x)  U(y)

L(x)  R(x)a         R(y) NIL

L(y)  R(y)b

P1:

P2:

P3:

Observation
Entry consistency implies that we need to lock and unlock data (implicitly or
not).

Question
What would be a convenient way of making this consistency more or less
transparent to programmers?
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Consistency and replication: Client-centric consistency models

Consistency for mobile users

Example

Consider a distributed database to which you have access through your
notebook. Assume your notebook acts as a front end to the database.

At location A you access the database doing reads and updates.

At location B you continue your work, but unless you access the same
server as the one at location A, you may detect inconsistencies:

your updates at A may not have yet been propagated to B
you may be reading newer entries than the ones available at A
your updates at B may eventually conflict with those at A

Note
The only thing you really want is that the entries you updated and/or read at A,
are in B the way you left them in A. In that case, the database will appear to be
consistent to you.
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Consistency and replication: Client-centric consistency models

Basic architecture

The principle of a mobile user accessing different replicas of a distributed
database

Read and write operations

Client moves to other location
and (transparently) connects to
other replica

Wide-area network

Replicas need to maintain
client-centric consistency

Portable computer

Distributed and replicated database
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Consistency and replication: Client-centric consistency models Monotonic reads

Monotonic reads

Definition
If a process reads the value of a data item x , any successive read operation on
x by that process will always return that same or a more recent value.

The read operations performed by a single process P at two different local
copies of the same data store. (a) A monotonic-read consistent data store.
(b) A data store that does not provide monotonic reads

W (x )1 1

W (x x )2 1 2;

R (x )1 1

R (x )1 2

L1:

L2:

W (x )1 1

W (x x )2 1 2|

R (x )1 1

R (x )1 2

L1:

L2:
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Consistency and replication: Client-centric consistency models Monotonic reads

Client-centric consistency: notation

Notation

W1(x2) is the write operation by process P1 that leads to version x2 of x

W1(xi ;xj) indicates P1 produces version xj based on a previous version xi .

W1(xi |xj) indicates P1 produces version xj concurrently to version xi .
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Consistency and replication: Client-centric consistency models Monotonic reads

Monotonic reads

Example

Automatically reading your personal calendar updates from different servers.
Monotonic Reads guarantees that the user sees all updates, no matter from
which server the automatic reading takes place.

Example

Reading (not modifying) incoming mail while you are on the move. Each time
you connect to a different e-mail server, that server fetches (at least) all the
updates from the server you previously visited.
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Consistency and replication: Client-centric consistency models Monotonic writes

Monotonic writes

Definition
A write operation by a process on a data item x is completed before any
successive write operation on x by the same process.

(a) A monotonic-write consistent data store. (b) A data store that does not
provide monotonic-write consistency. (c) Again, no consistency as WS(x1|x2)
and thus also WS(x1|x3). (d) Consistent as WS(x1;x3) although x1 has
apparently overwritten x2 .

W (x )1 1

W (x x )2 1 2; W (x x )1 2 3;

L1:

L2:

W (x )1 1

W (x x )2 1 2| W (x x )1 31|

L1:

L2:

(a) (b)

W (x )1 1

W (x x )2 1 2| W (x x )1 2 3;

L1:

L2:

W (x )1 1

W (x x )2 1 2| W (x x )1 31;

L1:

L2:

(c) (d)
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Consistency and replication: Client-centric consistency models Monotonic writes

Monotonic writes

Example

Updating a program at server S2 , and ensuring that all components on which
compilation and linking depends, are also placed at S2 .

Example

Maintaining versions of replicated files in the correct order everywhere
(propagate the previous version to the server where the newest version is
installed).
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Consistency and replication: Client-centric consistency models Read your writes

Read your writes

Definition
The effect of a write operation by a process on data item x , will always be seen
by a successive read operation on x by the same process.

(a) A data store that provides read-your-writes consistency. (b) A data store
that does not.

W (x )1 1

W (x x )2 1 2; R1 2(x )

L1:

L2:

W (x )1 1

W (x x )2 1 2| R1 2(x )

L1:

L2:

(a) (b)

Example

Updating your Web page and guaranteeing that your Web browser shows the
newest version instead of its cached copy.
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Consistency and replication: Client-centric consistency models Writes follow reads

Writes follow reads

Definition
A write operation by a process on a data item x following a previous read
operation on x by the same process, is guaranteed to take place on the same
or a more recent value of x that was read.

(a) A writes-follow-reads consistent data
store. (b) A data store that does not
provide writes-follow-reads consistency

R2(x )1W (x )1 1

W (x x )3 1 2; W (x x )2 2 3;

L1:

L2:

(a)
W (x )1 1 R2(x )1

W (x x )3 1 2| W (x x )2 31|

L1:

L2:

(b)

Example

See reactions to posted articles
only if you have the original
posting (a read “pulls in” the
corresponding write operation).
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Consistency and replication: Replica management Finding the best server location

Replica placement

Essence
Figure out what the best K places are out of N possible locations.

Select best location out of N−K for which the average distance to clients
is minimal. Then choose the next best server. (Note: The first chosen
location minimizes the average distance to all clients.) Computationally
expensive.
Select the K -th largest autonomous system and place a server at the
best-connected host. Computationally expensive.
Position nodes in a d-dimensional geometric space, where distance
reflects latency. Identify the K regions with highest density and place a
server in every one. Computationally cheap.
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Consistency and replication: Replica management Content replication and placement

Content replication

Distinguish different processes

A process is capable of hosting a replica of an object or data:

Permanent replicas: Process/machine always having a replica
Server-initiated replica: Process that can dynamically host a replica on
request of another server in the data store
Client-initiated replica: Process that can dynamically host a replica on
request of a client (client cache)

Permanent replicas 21 / 33



Consistency and replication: Replica management Content replication and placement

Content replication

The logical organization of different kinds of copies of a data store into three
concentric rings

Permanent
replicas

Server-initiated replicas

Client-initiated replicas

Clients

Client-initiated replication

Server-initiated replication
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Consistency and replication: Replica management Content replication and placement

Server-initiated replicas

Counting access requests from different clients

Server without
copy of file F

Client Server with
copy of F

P

Q

C1

C2

Server Q counts access from C  and
C   as if they would come from P

1

2

File F

Keep track of access counts per file, aggregated by considering server
closest to requesting clients
Number of accesses drops below threshold D ⇒ drop file
Number of accesses exceeds threshold R ⇒ replicate file
Number of access between D and R ⇒ migrate file

Server-initiated replicas 23 / 33



Consistency and replication: Replica management Content distribution

Content distribution

Consider only a client-server combination

Propagate only notification/invalidation of update (often used for caches)
Transfer data from one copy to another (distributed databases): passive
replication
Propagate the update operation to other copies: active replication

Note
No single approach is the best, but depends highly on available bandwidth and
read-to-write ratio at replicas.
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Consistency and replication: Replica management Content distribution

Content distribution: client/server system

A comparison between push-based and pull-based protocols in the case of
multiple-client, single-server systems

Pushing updates: server-initiated approach, in which update is
propagated regardless whether target asked for it.

Pulling updates: client-initiated approach, in which client requests to be
updated.

Issue Push-based Pull-based
1: List of client caches None
2: Update (and possibly fetch update) Poll and update
3: Immediate (or fetch-update time) Fetch-update time
1: State at server
2: Messages to be exchanged
3: Response time at the client

Pull versus push protocols 25 / 33



Consistency and replication: Replica management Content distribution

Content distribution
Observation
We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time dependent on system’s behavior (adaptive leases)

Age-based leases: An object that hasn’t changed for a long time, will not
change in the near future, so provide a long-lasting lease

Renewal-frequency based leases: The more often a client requests a
specific object, the longer the expiration time for that client (for that object)
will be

State-based leases: The more loaded a server is, the shorter the
expiration times become

Question
Why are we doing all this?

Pull versus push protocols 26 / 33
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Consistency and replication: Consistency protocols Continuous consistency

Continuous consistency: Numerical errors

Principal operation

Every server Si has a log, denoted as Li .

Consider a data item x and let val(W ) denote the numerical change in its
value after a write operation W . Assume that

∀W : val(W )> 0

W is initially forwarded to one of the N replicas, denoted as origin(W ).
TW [i , j] are the writes executed by server Si that originated from Sj :

TW [i , j] = ∑{val(W )|origin(W ) = Sj & W ∈ Li}

Bounding numerical deviation 27 / 33



Consistency and replication: Consistency protocols Continuous consistency

Continuous consistency: Numerical errors

Note

Actual value v(t) of x :

v(t) = vinit +
N

∑
k=1

TW [k ,k ]

value vi of x at server Si :

vi = vinit +
N

∑
k=1

TW [i ,k ]

Bounding numerical deviation 28 / 33



Consistency and replication: Consistency protocols Continuous consistency

Continuous consistency: Numerical errors

Problem

We need to ensure that v(t)−vi < δi for every server Si .

Approach

Let every server Sk maintain a view TWk [i , j] of what it believes is the value of
TW [i , j]. This information can be gossiped when an update is propagated.

Note

0≤ TWk [i , j]≤ TW [i , j]≤ TW [j , j]

Bounding numerical deviation 29 / 33
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Consistency and replication: Consistency protocols Continuous consistency

Continuous consistency: Numerical errors

Solution

Sk sends operations from its log to Si when it sees that TWk [i ,k ] is getting too
far from TW [k ,k ], in particular, when

TW [k ,k ]−TWk [i ,k ]> δi/(N−1)

Question

To what extent are we being pessimistic here: where does δi/(N−1) come
from?

Note
Staleness can be done analogously, by essentially keeping track of what has
been seen last from Si (see book).

Bounding numerical deviation 30 / 33
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Consistency and replication: Consistency protocols Primary-based protocols

Primary-based protocols
Primary-backup protocol

Data store

Primary server
for item x

Client Client

Backup server

W1. Write request
W2. Forward request to primary
W3. Tell backups to update
W4. Acknowledge update
W5. Acknowledge write completed

W1

W2

W3 W3

W3

W4 W4

W4

W5

R1. Read request
R2. Response to read

R1 R2

Example primary-backup protocol

Traditionally applied in distributed databases and file systems that require a
high degree of fault tolerance. Replicas are often placed on same LAN.

Remote-write protocols 31 / 33
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Consistency and replication: Consistency protocols Primary-based protocols

Primary-based protocols
Primary-backup protocol with local writes

Data store

Old primary
for item x

Client Client

Backup server

W1. Write request
W2. Move item x to new primary

W4. Tell backups to update
W5. Acknowledge update

W3. Acknowledge write completed

R1

W2

W4W4

W4

R2

R1. Read request
R2. Response to read

W1 W3

New primary
for item x

W5 W5

W5

Example primary-backup protocol with local writes

Mobile computing in disconnected mode (ship all relevant files to user before
disconnecting, and update later on).

Local-write protocols 32 / 33
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Consistency and replication: Consistency protocols Replicated-write protocols

Replicated-write protocols

Quorum-based protocols

Ensure that each operation is carried out in such a way that a majority vote is
established: distinguish read quorum and write quorum

Three examples of the voting algorithm. (a) A correct choice of read and write
set. (b) A choice that may lead to write-write conflicts. (c) A correct choice,
known as ROWA (read one, write all)

A B C D

E F G H

I J K L

N
R W

N= 3, = 10

A B C D

E F G H

I J K L

N
R W

N= 7, = 6

A B C D

E F G H

I J K L

N
R W

N= 1, = 12

Quorum-based protocols 33 / 33
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