Biases in Classification

DSA 261

With Dr. Grant

Last time in class

- We introduced linear classification with python sklearn.
- You created scatter plots and plotted decision boundaries.
- You interpreted the learned conclusions from different data sets.
- We discussed correlations.

Trends in data

 $\boldsymbol{\chi}$

https://www.sjsu.edu/faculty/gerstman/StatPrimer/correlation.pdf

In real world data it is not so simple

We use Pearson's Correlation coefficient to determine the trends.

$$r = rac{\sum \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

Correlations can be weak

0 < |r| < 0.3 weak correlation

0.3 < |r| < 0.7 moderate correlation

|r| > 0.7 Strong correlation

Trends in data can be misleading.

When we separate the data by another parameter, we uncover a more descriptive trend.

Simpson's Paradox

- When a trend between two variables is reversed in *all* subgroups of the data.
- If the trend is reversed for *some* subgroups, it is a mix effect.

Mix Effect

Simpson's Paradox (Rate-based)

	Hits / At Bats				
David Justice					
Derek Jeter					

Pearl, Judea. "The Book of Why." (2018): 203.

Mix Effects (Rate-based)

	Applicants	Admitted	
Men	8442	44%	
Women	4321	35%	

Department	Men		Women	
	Applicants	Admitted	Applicants	Admitted
Α	825	62%	108	82%
В	560	63%	25	68%
С	325	37%	593	34%
D	417	33%	375	35%
E	191	28%	393	24%
F	373	6%	341	7%

Berkson's paradox

• When traits are negatively correlated in a population selected on those traits.

"Height does not correlate with performance in the NBA"

Berkson's paradox

"Good Movies make bad books."

