Simpson’s Paradox

We define the following components to formalize the definition:

- **view**: a group of variables that define a way of analyzing the data ex: the axes of a plot or a table of a summary statistic
- **trend**: a relationship between a set of variables in a trend ex: a correlation or the ordering of rows
- **grouping variable**: a categorical variable that defines partitions of the data
- **subgroup**: a partition of the data that has a single value of a given grouping variable

An occurrence of Simpson’s Paradox is defined with respect to a given view of the data where a subgroup has the opposite trend of the whole dataset for that view.

To detect Simpson’s Paradox:
1. Iterate over views of the data
2. Compute the aggregate trend
3. Iterate over the grouping variables
4. Compute the subgroup trend for each value of the grouping variable
5. Check for trend reversal

Regression Type

- **Classic Example**: drug effectiveness by dosage and gender
- There’s a linear correlation between two variables and grouping by another, a reversal can be in correlation coefficient

Rate Type

- **Classic Example**: Berkeley Grad Admissions
- The trend is in the ranking of the groups divided by an ‘explanatory’ variable with the value of the ‘outcome variable’

Generalizing Simpson’s Paradox

Using the above definitions, we want to consider:

- Trends where reversal isn’t well defined
- Cases where grouping variables are not all known

For more general trends we do the following:
1. Consider distance between aggregate and subgroup trends
2. Rank views by the distance instead of counting occurrences

To include more grouping cases:
1. Augment the data with clustering for a given view
2. Augment the data with quantiles (discretization of a variable)

New Detection Framework

1. Augment data with clusters
2. Augment with quantile labels
3. Compute aggregate trends for each view
4. Compute subgroup trends for each categorical variable for each view
5. Compute distance between subgroups and aggregate trend for each view
6. Rank views

Examples

- **Regression Type**
- **Rate Type**

Case Study: Racial Profiling

In a study of racial profiling and the impact of Marijuana reform on racial profiling we use our data augmentation and trend ranking tools to identify areas for qualitative analysis.

Future Work

1. Integrate relaxations with visualization
2. Ranking ablation study

Preliminary results in profiling data